SaTC: CORE: Medium: Collaborative: Towards Robust Machine Learning Systems

SaTC:核心:媒介:协作:迈向稳健的机器学习系统

基本信息

  • 批准号:
    1801751
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Machine learning techniques, particularly deep neural networks, are increasingly integrated into safety and security-critical applications such as autonomous driving, precision health care, intrusion detection, malware detection, and spam filtering. A number of studies have shown that these models can be vulnerable to adversarial evasion attacks where the attacker makes small, carefully crafted changes to normal examples in order to trick the model into making incorrect decisions. This project's goal is to develop formal understandings of and defenses against these vulnerabilities through characterizing the relationship between adversarial and non-adversarial examples, developing mechanisms that exploit this relationship to support better detection of adversarial examples, and metrics and methods to demonstrate the robustness of machine learning models against them. Together, the theories, algorithms, and metrics developed will improve the robustness of machine learning systems, allowing them to be deployed more securely in mission-critical applications. The team will also make their datasets and source code publicly available and use them in their own courses and research with both graduate and undergraduate students, with particular efforts to include students from underrepresented groups in Science, Technology, Engineering and Math. The work will also support high school outreach programs and summer camps to attract younger students to study machine learning, security, and computer science.The project is organized around three main thrusts that combine to provide a holistic approach to modeling and defending against evasion attacks. The first thrust aims to characterize both normal and adversarial examples via systematic measurement studies. This includes considering different types of regions around specific examples (e.g., metric ball, manifold, and transformation-induced regions) and then characterizing the examples' vulnerability based on a number of algorithms for combining classifications of other examples in the nearby regions. The second thrust focuses on designing robust defenses against adversarial examples by using representative data points in a region, aggregating multiple data points, and using a diverse set of classifiers to reduce the vulnerability induced by using single data points or algorithms. The third thrust involves defining metrics for modeling robustness along with theories and algorithms that leverage those metrics to analyze model robustness. These include lower bounds of adversarial perturbation in metric balls, robustness metrics based on computational costs, analyses of the representativeness of new datasets relative to training data, and methods for leveraging human estimation of adversarialness.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习技术,尤其是深层神经网络,越来越多地集成到安全和安全的应用中,例如自动驾驶,精密医疗保健,入侵检测,恶意软件检测和垃圾邮件过滤。 许多研究表明,这些模型可能容易受到对抗性逃避攻击的攻击,在这种攻击中,攻击者对正常示例进行了少量,精心制作的更改,以欺骗模型做出错误的决策。 该项目的目标是通过表征对抗性和非对抗性实例之间的关系,对这些漏洞进行正式理解和防御能力,开发出利用这种关系以更好地检测对抗性示例的机制,指标和方法以证明机器学习模型对他们的鲁棒性。 共同开发的理论,算法和指标将共同提高机器学习系统的鲁棒性,从而使它们在关键任务应用程序中更牢固地部署。 该团队还将公开提供他们的数据集和源代码,并在自己的课程中使用它们,并与研究生和本科生进行研究,并特别努力包括来自代表性不足的科学,技术,工程,工程和数学的学生。 这项工作还将支持高中外展计划和夏令营,以吸引年轻的学生学习机器学习,安全性和计算机科学。该项目围绕着三个主要的推力组织,它们结合起来,为逃避攻击提供了整体方法,以提供建模和防御。 第一个推力旨在通过系统的测量研究来表征正常和对抗性示例。 这包括考虑特定示例周围的不同类型的区域(例如,度量球,歧管和转换引起的区域),然后根据许多算法来表征示例的漏洞,以结合附近地区其他示例的分类。 第二个推力重点是通过使用区域中的代表性数据点,汇总多个数据点并使用一组不同的分类器来设计对对抗性示例的强大防御,并使用单个数据点或算法来减少引起的漏洞。 第三个推力涉及定义用于建模鲁棒性以及利用这些指标来分析模型鲁棒性的理论和算法的指标。 这些包括公制球中对抗性扰动的下限,基于计算成本的稳健性度量,分析新数据集相对于培训数据的代表性的分析以及利用人类对对抗性估计的方法。该奖项反映了NSF的法定任务,并通过评估范围来评估支持者,并通过评估范围来进行基金会的范围。

项目成果

期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Protect privacy of deep classification networks by exploiting their generative power
  • DOI:
    10.1007/s10994-021-05951-6
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    7.5
  • 作者:
    Jiyu Chen;Yiwen Guo;Qianjun Zheng;Hao Chen
  • 通讯作者:
    Jiyu Chen;Yiwen Guo;Qianjun Zheng;Hao Chen
Less is More: Culling the Training Set to Improve Robustness of Deep Neural Networks
少即是多:剔除训练集以提高深度神经网络的鲁棒性
Fooling Detection Alone is Not Enough: First Adversarial Attack against Multiple Object Tracking
  • DOI:
  • 发表时间:
    2019-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yunhan Jia;Yantao Lu;Junjie Shen;Qi Alfred Chen;Zhenyu Zhong;Tao Wei
  • 通讯作者:
    Yunhan Jia;Yantao Lu;Junjie Shen;Qi Alfred Chen;Zhenyu Zhong;Tao Wei
Integrity: Finding Integer Errors by Targeted Fuzzing
  • DOI:
    10.1007/978-3-030-63086-7_20
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuyang Rong;Peng Chen;Hao Chen
  • 通讯作者:
    Yuyang Rong;Peng Chen;Hao Chen
Backpropagating Linearly Improves Transferability of Adversarial Examples
  • DOI:
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yiwen Guo;Qizhang Li;Hao Chen
  • 通讯作者:
    Yiwen Guo;Qizhang Li;Hao Chen
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hao Chen其他文献

Intrusion Detection: Characterising intrusion detection sensors
入侵检测:表征入侵检测传感器
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Shaikh;Howard Chivers;P. Nobles;John A. Clark;Hao Chen
  • 通讯作者:
    Hao Chen
Attacks on Search RLWE
对搜索 RLWE 的攻击
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hao Chen;K. Lauter;Katherine E. Stange
  • 通讯作者:
    Katherine E. Stange
Conversion from Intermediate Age-Related Macular Degeneration to Geographic Atrophy in a Proxima B Subcohort Using a Multimodal Approach
使用多模式方法将 Proxima B 亚组中的中度年龄相关性黄斑变性转化为地理萎缩
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    S. Schmitz;Martina D. Braun;S. Thiele;Daniela Ferrara;L. Honigberg;Simon S. Gao;Hao Chen;Verena Steffen;F. Holz;M. Sassmannshausen
  • 通讯作者:
    M. Sassmannshausen
Does he ping promote we-being in at-risk youth and ex-ofender samp es ?
他平是否能促进高危青少年和刑满释放人员样本中的我们的幸福感?
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xijing Wang;Zhansheng Chen;Eva G. Krumhuber;Hao Chen
  • 通讯作者:
    Hao Chen
HOW FAR AND HOW FAST CAN ONE MOVE ON NEUTRAL NETWORK
一个人可以在中性网络上移动多远和多快
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chenghang Du;Hao Chen;Yunjie Zhao;Chen Zeng
  • 通讯作者:
    Chen Zeng

Hao Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hao Chen', 18)}}的其他基金

ERI: Representations of Complex Engineering Systems via Technology Recursion and Renormalization Group
ERI:通过技术递归和重整化群表示复杂工程系统
  • 批准号:
    2301627
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Making Use of the Curse of Dimensionality in Modern Data Analysis
在现代数据分析中利用维度诅咒
  • 批准号:
    2311399
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Development of Absolute Quantitative Protein Footprinting Mass Spectrometry (aqPFMS) for Probing Protein 3D Structures
开发用于探测蛋白质 3D 结构的绝对定量蛋白质足迹质谱 (aqPFMS)
  • 批准号:
    2203284
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Collaborative: Understanding and Detecting Memory Bugs in Rust
SaTC:核心:小:协作:理解和检测 Rust 中的内存错误
  • 批准号:
    1956364
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: New Change-Point Problems in Analyzing High-Dimensional and Non-Euclidean Data
职业:分析高维和非欧几里得数据的新变点问题
  • 批准号:
    1848579
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Development of Electrochemical Mass Spectrometry for the Study of Protein Redox Chemistry and Protein Structures
用于研究蛋白质氧化还原化学和蛋白质结构的电化学质谱法的发展
  • 批准号:
    1915878
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Development of Electrochemical Mass Spectrometry for the Study of Protein Redox Chemistry and Protein Structures
用于研究蛋白质氧化还原化学和蛋白质结构的电化学质谱法的发展
  • 批准号:
    1709075
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Change-Point Analysis for Multivariate and Object Data
多变量和对象数据的变点分析
  • 批准号:
    1513653
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Development of Microsecond Time-Resolved Mass Spectrometry for the Study of Biochemical Reaction Mechanisms and Kinetics
职业:开发微秒时间分辨质谱用于生化反应机制和动力学研究
  • 批准号:
    1149367
  • 财政年份:
    2012
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
TC: Small: Designing New Authentication Mechanisms using Hardware Capabilities in Advanced Mobile Devices
TC:小型:使用高级移动设备中的硬件功能设计新的身份验证机制
  • 批准号:
    1018964
  • 财政年份:
    2010
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

中等质量丰中子核区的新核结构模型方法
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    18 万元
  • 项目类别:
    专项基金项目
伏隔核D1/D2共表达中等多棘神经元在孤独症小鼠社交奖赏障碍中的作用及机制研究
  • 批准号:
    81901381
  • 批准年份:
    2019
  • 资助金额:
    20.5 万元
  • 项目类别:
    青年科学基金项目
星系中心的中等质量黑洞研究
  • 批准号:
    11473062
  • 批准年份:
    2014
  • 资助金额:
    90.0 万元
  • 项目类别:
    面上项目
过渡区中等质量原子核结构的配对壳模型研究
  • 批准号:
    11305101
  • 批准年份:
    2013
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
中等和大质量黑洞的潮汐瓦解及其吸积与辐射
  • 批准号:
    10873015
  • 批准年份:
    2008
  • 资助金额:
    42.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330940
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317233
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
SaTC: CORE: Medium: Testing the causal influence of social media on well-being and animosity
SaTC:核心:中:测试社交媒体对幸福感和敌意的因果影响
  • 批准号:
    2334148
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330941
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了