EAGER: A Python Program Analysis Infrastructure to Facilitate Better Data Processing
EAGER:Python 程序分析基础设施,促进更好的数据处理
基本信息
- 批准号:1748764
- 负责人:
- 金额:$ 14.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-15 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Python is the third most popular programming language, after C and Java, and the most widely used language in Machine Learning and Data Science. Applications in Python are prone to human errors as much as those in other languages, or maybe more so due to the dynamic nature of Python. Therefore, tools to analyze, test, verify, and optimize Python applications are in a pressing need. Such tools are lagging or non-existent for Python. The root cause is the lack of infrastructure to support building practical and effective tools, which entails addressing the dynamic features of Python, such as dynamic typing, dynamic code loading/execution, and pervasive invocations to external library functions implemented in other languages. This project aims to explore the feasibility of building a Python program analysis infrastructure by developing two sample tools that rely upon a common set of infrastructural capabilities including the instrumentation, static analysis and symbolic analysis capabilities. The two sample tools are a data provenance tracking tool for machine learning applications and a bug finding tool to detect data format inconsistencies, which are the most dominant type of bugs in data processing. The provenance tool will demonstrate the importance of static analysis and program instrumentation, and the bug finding tool will demonstrate the importance of symbolic analysis. Both tools will illustrate the great benefits that can be brought to data scientists by advanced tools. In addition, they will illustrate that the aforementioned capabilities cannot be simply ported from existing infrastructures for other languages such as C and Java. The infrastructure will meet the pressing need of comprehensive tool building support for Python. A lot of cutting-edge synergistic research will be enabled across the CISE research community to serve data application programmers, data scientists and even end users.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Python 是继 C 和 Java 之后第三大流行的编程语言,也是机器学习和数据科学中使用最广泛的语言,Python 中的应用程序与其他语言中的应用程序一样容易出现人为错误,或者由于以下原因更容易出现人为错误。因此,分析、测试、验证和优化Python应用程序的工具对于Python来说是滞后的或不存在的,根本原因是缺乏支持构建实用和有效的基础设施。工具,这需要解决动态特征Python 的功能,例如动态类型、动态代码加载/执行以及对其他语言实现的外部库函数的普遍调用。该项目旨在通过开发两个依赖于通用的基础设施功能集,包括检测、静态分析和符号分析功能,这两个示例工具是用于机器学习应用程序的经过数据验证的跟踪工具,以及用于检测数据格式不一致的错误查找工具,数据格式不一致是最常见的错误类型。数据来源工具将展示静态分析和程序检测的重要性,而错误查找工具将展示符号分析的重要性。此外,这两种工具都将展示高级工具可以给数据科学家带来的巨大好处。他们将说明,上述功能不能简单地从 C 和 Java 等其他语言的现有基础设施中移植,该基础设施将满足 Python 全面工具构建支持的迫切需求。使整个 CISE 研究社区能够服务该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
ABS: Scanning Neural Networks for Back-doors by Artificial Brain Stimulation
ABS:通过人工大脑刺激扫描神经网络是否存在后门
- DOI:10.1145/3319535.3363216
- 发表时间:2019-11-06
- 期刊:
- 影响因子:0
- 作者:Yingqi Liu;Wen;Guanhong Tao;Shiqing Ma;Yousra Aafer;X. Zhang
- 通讯作者:X. Zhang
LAMP: data provenance for graph based machine learning algorithms through derivative computation
LAMP:通过导数计算实现基于图的机器学习算法的数据来源
- DOI:10.1145/3106237.3106291
- 发表时间:2017-08-21
- 期刊:
- 影响因子:0
- 作者:Shiqing Ma;Yousra Aafer;Zhaogui Xu;Wen;Juan Zhai;Yingqi Liu;X. Zhang
- 通讯作者:X. Zhang
NIC: Detecting Adversarial Samples with Neural Network Invariant Checking
NIC:通过神经网络不变检查检测对抗性样本
- DOI:10.14722/ndss.2019.23415
- 发表时间:2024-09-13
- 期刊:
- 影响因子:0
- 作者:Shiqing Ma;Yingqi Liu;Guanhong Tao;Wen;X. Zhang
- 通讯作者:X. Zhang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiangyu Zhang其他文献
Sarcopenic obesity and falls in older adults: A validation study of ESPEN/EASO criteria and modifications in Western China communities.
老年人的肌肉减少性肥胖和跌倒:中国西部社区 ESPEN/EASO 标准和修改的验证研究。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Runjie Li;Xiaoyan Chen;Huiyu Tang;S. Luo;Rongna Lian;Wenyi Zhang;Xiangyu Zhang;Xiaoyi Hu;Ming Yang - 通讯作者:
Ming Yang
Inhibitory effects of citrus lemon oil and limonene on Streptococcus sobrinus - Induced dental caries in rats.
柑橘柠檬油和柠檬烯对远缘链球菌的抑制作用 - 诱发大鼠龋齿。
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:3
- 作者:
Y. Liu;Peiwen Liu;Li Wang;Ya;J. Chen;Huijuan Wang;Xiangyu Zhang - 通讯作者:
Xiangyu Zhang
Development and characterization of size controlled polymeric microcapsules loaded with superparamagnetic nanoparticles
负载超顺磁性纳米粒子的尺寸控制聚合物微胶囊的开发和表征
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Xiangyu Zhang;Li Xue;Jun Wang;Zhanshuang Li;Qi Liu;Milin Zhang;X. Jing;Lian - 通讯作者:
Lian
Modified strong tracking cubature Kalman filter for LiFePO4 storage system
用于LiFePO4存储系统的改进强跟踪容积卡尔曼滤波器
- DOI:
10.1109/acept.2017.8168556 - 发表时间:
2017-10-01 - 期刊:
- 影响因子:0
- 作者:
Pengfeng Lin;Peng Wang;Jianfang Xiao;Chi Jin;J. Jia;Wei Da Toh;Xiangyu Zhang - 通讯作者:
Xiangyu Zhang
Predicting the Outcomes of Subjects With Severe Community-Acquired Pneumonia Using Monocyte Human Leukocyte Antigen-DR
使用单核细胞人类白细胞抗原-DR 预测严重社区获得性肺炎受试者的结果
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:2.5
- 作者:
Y. Zhuang;Wenjie Li;Huiqi Wang;Hu Peng;Yanqing Chen;Xiangyu Zhang;Yuanzhuo Chen;Chengjin Gao - 通讯作者:
Chengjin Gao
Xiangyu Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiangyu Zhang', 18)}}的其他基金
SHF: Small: AI Model Debugging by Analyzing Model Internals with Python Program Analysis
SHF:小:通过 Python 程序分析分析模型内部结构进行 AI 模型调试
- 批准号:
1910300 - 财政年份:2019
- 资助金额:
$ 14.7万 - 项目类别:
Standard Grant
CSR: Small: Elastic and Robust Cloud Programming
CSR:小型:弹性且稳健的云编程
- 批准号:
1618923 - 财政年份:2016
- 资助金额:
$ 14.7万 - 项目类别:
Standard Grant
Travel Support For ACM SIGSOFT Symposium on the Foundations of Software Engineering (FSE 2014)
ACM SIGSOFT 软件工程基础研讨会 (FSE 2014) 的差旅支持
- 批准号:
1434610 - 财政年份:2014
- 资助金额:
$ 14.7万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: Towards Automated Model Synthesis of Library and System Functions for Program-Environment Co-Analysis
SHF:小型:协作研究:面向程序-环境协同分析的库和系统功能的自动模型综合
- 批准号:
1320326 - 财政年份:2013
- 资助金额:
$ 14.7万 - 项目类别:
Standard Grant
SHF: Small: Reliable Data Processing by Dynamic Program Analysis
SHF:小型:通过动态程序分析进行可靠的数据处理
- 批准号:
1320444 - 财政年份:2013
- 资助金额:
$ 14.7万 - 项目类别:
Standard Grant
SHF: CSR: Small: Collaborative Research: Automated Model Synthesis of Library and System Functions for Program-Environment Co-Analysis
SHF:CSR:小型:协作研究:用于程序-环境协同分析的库和系统功能的自动模型合成
- 批准号:
1218993 - 财政年份:2012
- 资助金额:
$ 14.7万 - 项目类别:
Standard Grant
CAREER: Scalable Dynamic Program Reasoning
职业:可扩展的动态程序推理
- 批准号:
0845870 - 财政年份:2009
- 资助金额:
$ 14.7万 - 项目类别:
Continuing Grant
CSR: Small: Automated Software Failure Causal Path Computation
CSR:小:自动化软件故障因果路径计算
- 批准号:
0917007 - 财政年份:2009
- 资助金额:
$ 14.7万 - 项目类别:
Standard Grant
CSR-AES-RCS: Scalable and Efficient Dynamic Information Flow Tracking in Multithreaded Programs
CSR-AES-RCS:多线程程序中可扩展且高效的动态信息流跟踪
- 批准号:
0720516 - 财政年份:2007
- 资助金额:
$ 14.7万 - 项目类别:
Standard Grant
CRI: IAD An Advanced Infrastructure for Generation, Storage, and Analysis of Program Execution Traces
CRI:IAD 用于生成、存储和分析程序执行跟踪的高级基础设施
- 批准号:
0708464 - 财政年份:2007
- 资助金额:
$ 14.7万 - 项目类别:
Standard Grant
相似海外基金
Travel Grant: Conference Support for the Python in Heliophysics Community (PyHC) 2024 Summer School; Boulder, Colorado; May 20-24, 2024
旅费资助:太阳物理学社区 (PyHC) 2024 年 Python 暑期学校会议支持;
- 批准号:
2414651 - 财政年份:2024
- 资助金额:
$ 14.7万 - 项目类别:
Standard Grant
仮想空間と現実空間での学びを融合した医療系大学におけるデータサイエンス教育の検証
虚拟和现实空间学习相结合的医科大学数据科学教育的验证
- 批准号:
23K02636 - 财政年份:2023
- 资助金额:
$ 14.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Pywr-WREW, a Water Resources model for England and Wales built in Python water resources simulation system
Pywr-WREW,用Python构建的英格兰和威尔士水资源模拟系统水资源模型
- 批准号:
ST/Y003802/1 - 财政年份:2023
- 资助金额:
$ 14.7万 - 项目类别:
Research Grant
Creating Python Apps for Engineers
为工程师创建 Python 应用程序
- 批准号:
573328-2022 - 财政年份:2022
- 资助金额:
$ 14.7万 - 项目类别:
University Undergraduate Student Research Awards
Creating Python Apps for Engineers
为工程师创建 Python 应用程序
- 批准号:
573199-2022 - 财政年份:2022
- 资助金额:
$ 14.7万 - 项目类别:
University Undergraduate Student Research Awards