Collaborative Research: Interfacial Self-healing of Nanocomposite Hydrogels

合作研究:纳米复合水凝胶的界面自修复

基本信息

  • 批准号:
    1762567
  • 负责人:
  • 金额:
    $ 27.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-15 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

Self-healing polymers are synthetic materials capable of autonomously repairing damages without human intervention. They have shown great potentials for sustainable technologies in diverse engineering applications, including artificial muscles and skins, flexible electronics, soft robotics and many others. Nevertheless, the state-of-the-art design of self-healing polymers remains at the trial-and-error stage with insufficient theoretical guidance. This award supports fundamental research to elucidate the self-healing mechanics of nanocomposite hydrogels that consist of water-mediated polymer networks crosslinked by nanoparticles. The knowledge obtained from this project will provide mechanistic insights into self-healing polymers that are able to restore their functionality after damage. The research will not only promote the fundamental science of self-healing mechanics, but also advance the national health, prosperity, and welfare through further development and enhancement of soft-materials based sustainable technologies. This project will also train a diverse group of students in the areas of solid mechanics, polymer science, mechanical engineering, and high-performance computing for next-generation workforce development. The educational objectives of the project will be realized through curriculum development, undergraduate research opportunities, summer research program for high school students, research experience for K-12 teachers program, and K-12 outreach program. Special efforts will be made to involve underrepresented students in this project. Despite extensive studies in the syntheses and applications of self-healing polymers, constructing the mechanistic relationship between self-healing properties and material/healing settings remains challenging. The key technical barrier is how to physically model the microstructure evolution of the polymer networks during the self-healing process. The central hypothesis of this project is that the self-healing strength of nanocomposite hydrogel is governed by the diffusion of polymer chains across the fractured interface and subsequent crosslinks formed with nanoparticles. To test this hypothesis, the project integrates molecular dynamics simulations and analytical theories to study microscopic diffusion-reaction behaviors of polymer chains during self-healing process and macroscopic interfacial strengths after self-healing. The computational and theoretical predictions will be systematically validated with experimental studies of nanocomposite hydrogels composed of several material compositions, such as particle concentration, particle size, and water fraction, and under various external healing controls, such as temperature and delaying time. The interdisciplinary effort will open promising avenues for quantitatively understanding the multiscale mechanics of self-healing polymers and providing fundamental design principles of high-performance self-healing polymers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自修复聚合物是能够在无需人工干预的情况下自主修复损伤的合成材料。它们在各种工程应用中显示出可持续技术的巨大潜力,包括人造肌肉和皮肤、柔性电子产品、软机器人等。然而,最先进的自修复聚合物设计仍处于试错阶段,缺乏足够的理论指导。该奖项支持基础研究,以阐明纳米复合水凝胶的自修复机制,该水凝胶由纳米粒子交联的水介导的聚合物网络组成。从该项目中获得的知识将为自修复聚合物提供机制见解,这些聚合物能够在损坏后恢复其功能。该研究不仅将促进自愈力学的基础科学发展,还将通过进一步开发和增强基于软材料的可持续技术来促进国民健康、繁荣和福利。该项目还将在固体力学、聚合物科学、机械工程和高性能计算领域培训多元化的学生,以促进下一代劳动力的发展。该项目的教育目标将通过课程开发、本科生研究机会、高中生暑期研究计划、K-12教师研究经验计划和K-12外展计划来实现。我们将特别努力让代表性不足的学生参与该项目。尽管对自修复聚合物的合成和应用进行了广泛的研究,但构建自修复特性与材料/修复设置之间的机械关系仍然具有挑战性。关键的技术障碍是如何对自修复过程中聚合物网络的微观结构演化进行物理建模。该项目的中心假设是,纳米复合水凝胶的自愈强度取决于聚合物链穿过断裂界面的扩散以及随后与纳米颗粒形成的交联。为了验证这一假设,该项目整合了分子动力学模拟和分析理论,研究自修复过程中聚合物链的微观扩散反应行为以及自修复后的宏观界面强度。计算和理论预测将通过由多种材料成分(例如颗粒浓度、颗粒尺寸和水分数)组成的纳米复合水凝胶的实验研究以及在各种外部愈合控制(例如温度和延迟时间)下得到系统验证。这项跨学科的努力将为定量理解自修复聚合物的多尺度力学开辟有希望的途径,并提供高性能自修复聚合物的基本设计原理。该奖项反映了 NSF 的法定使命,并通过使用基金会的评估进行评估,被认为值得支持。智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sharkskin-Inspired Magnetoactive Reconfigurable Acoustic Metamaterials
  • DOI:
    10.34133/2020/4825185
  • 发表时间:
    2020-02-05
  • 期刊:
  • 影响因子:
    11
  • 作者:
    Lee, Kyung Hoon;Yu, Kunhao;Wang, Qiming
  • 通讯作者:
    Wang, Qiming
Photosynthesis-assisted remodeling of three-dimensional printed structures
光合作用辅助重塑三维打印结构
  • DOI:
    10.1073/pnas.2016524118
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yu, Kunhao;Feng, Zhangzhengrong;Du, Haixu;Xin, An;Lee, Kyung Hoon;Li, Ketian;Su, Yipin;Wang, Qiming;Fang, Nicholas X.;Daraio, Chiara
  • 通讯作者:
    Daraio, Chiara
Mechanics of photosynthesis assisted polymer strengthening
Molecular simulation-guided and physics-informed mechanistic modeling of multifunctional polymers
  • DOI:
    10.1007/s10409-021-01100-3
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Guang Chen;Weikang Xian;Qiming Wang;Ying Li
  • 通讯作者:
    Guang Chen;Weikang Xian;Qiming Wang;Ying Li
Mechanics of electrophoresis-induced reversible hydrogel adhesion
  • DOI:
    10.1016/j.jmps.2018.12.007
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    A. Xin;Runrun Zhang;Kunhao Yu;Qiming Wang
  • 通讯作者:
    A. Xin;Runrun Zhang;Kunhao Yu;Qiming Wang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Qiming Wang其他文献

Structural and optical properties of (Sr,Ba)2SiO4:Eu2+ thin films grown by magnetron sputtering
磁控溅射生长的(Sr,Ba)2SiO4:Eu2薄膜的结构和光学性质
  • DOI:
    10.1016/j.jlumin.2013.09.062
  • 发表时间:
    2014-08
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Leliang Li;Jun Zheng;Yuhua Zuo;Buwen Cheng;Qiming Wang
  • 通讯作者:
    Qiming Wang
Reciprocating Compression of ZnO Probed by X‑ray Diffraction: The Size Effect on Structural Properties under High Pressure
X 射线衍射探测 ZnO 往复压缩:高压下尺寸对结构性能的影响
  • DOI:
    10.1021/acs.inorgchem.8b00357
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qiming Wang;Shourui Li;Qiang He;Wenjun Zhu;Duanwei He;Fang Peng;Li Lei;Leilei Zhang;Qiang Zhang;Lijie Tan;Xin Li;Xiaodong Li
  • 通讯作者:
    Xiaodong Li
Colonoscopic finding of an unusual sigmoid colon fistula caused by ovarian teratoma
结肠镜发现卵巢畸胎瘤引起的异常乙状结肠瘘
  • DOI:
    10.1055/s-0034-1391236
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    9.3
  • 作者:
    H. Yi;Y. Mou;Wei Liu;H. Zeng;Qiming Wang;Chengwei Tang;B. Hu
  • 通讯作者:
    B. Hu
Efficient 1.54-μm emission through Eu2+ sensitization of Er3+ in thin films of Eu2+/Er3+ codoped barium strontium silicate under broad ultraviolet light excitation
在宽紫外光激发下,Eu2/Er3 共掺杂硅酸锶钡薄膜中 Er3 的 Eu2 敏化实现高效 1.54-μm 发射
  • DOI:
    10.1016/j.jlumin.2014.08.056
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Jun Zheng;Yuhua Zuo;Buwen Cheng;Qiming Wang
  • 通讯作者:
    Qiming Wang
Effect of Si-Ge interdiffusion on the waveguide properties of SiGe-Si MQW photodetector
Si-Ge互扩散对SiGe-Si MQW光电探测器波导性能的影响

Qiming Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Qiming Wang', 18)}}的其他基金

CAREER: Mechanics of Damage-Tolerant Electro-Mechano-Chemically
职业:耐损伤机电化学力学
  • 批准号:
    1943598
  • 财政年份:
    2020
  • 资助金额:
    $ 27.04万
  • 项目类别:
    Standard Grant
EAGER: Stereolithography-based Multi-material Additive Manufacturing of Particle-reinforced Composite Lattices to Achieve Tunable Negative-Thermal-Expansions
EAGER:基于立体光刻的颗粒增强复合晶格多材料增材制造,以实现可调节的负热膨胀
  • 批准号:
    1649093
  • 财政年份:
    2016
  • 资助金额:
    $ 27.04万
  • 项目类别:
    Standard Grant

相似国自然基金

柴燃联合大功率摩擦离合器涨圈密封失效机理与摩擦界面改形改性方法研究
  • 批准号:
    52305176
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
蜜蜂足垫粘附接触界面的力学调控机理及其仿生研究
  • 批准号:
    52375282
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
结合界面预压式复合粘结锚固抗剪连接组合梁的界面强化机制及疲劳性能研究
  • 批准号:
    52378158
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
陶瓷电极新型界面原位构筑及电催化氧化乙烷脱氢制乙烯研究
  • 批准号:
    22379025
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
金属/氧化镓特定界面的声子非弹性输运机理与传热强化研究
  • 批准号:
    52306115
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Controlling the properties of oxide-encapsulated metals for interfacial catalysis
合作研究:控制氧化物封装金属的界面催化性能
  • 批准号:
    2311986
  • 财政年份:
    2023
  • 资助金额:
    $ 27.04万
  • 项目类别:
    Standard Grant
Collaborative Research: Interfacial Phenomena of Functional Solutes Impregnated into Cellulose Packaging Substrates
合作研究:功能性溶质浸渍纤维素包装基材的界面现象
  • 批准号:
    2322502
  • 财政年份:
    2023
  • 资助金额:
    $ 27.04万
  • 项目类别:
    Standard Grant
Collaborative Research: ISS: Probing Interfacial Instabilities in Flow Boiling and Condensation via Acoustic Signatures in Microgravity
合作研究:ISS:通过微重力下的声学特征探测流动沸腾和冷凝中的界面不稳定性
  • 批准号:
    2323023
  • 财政年份:
    2023
  • 资助金额:
    $ 27.04万
  • 项目类别:
    Standard Grant
Collaborative Research: Interfacial Phenomena of Functional Solutes Impregnated into Cellulose Packaging Substrates
合作研究:功能性溶质浸渍纤维素包装基材的界面现象
  • 批准号:
    2322501
  • 财政年份:
    2023
  • 资助金额:
    $ 27.04万
  • 项目类别:
    Standard Grant
Collaborative Research: ISS: Probing Interfacial Instabilities in Flow Boiling and Condensation via Acoustic Signatures in Microgravity
合作研究:ISS:通过微重力下的声学特征探测流动沸腾和冷凝中的界面不稳定性
  • 批准号:
    2323022
  • 财政年份:
    2023
  • 资助金额:
    $ 27.04万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了