Collaborative Research: Controlled Investigation of Micro- and Nanoscale Contact Interactions Between Microbes and Biomaterials Using Artificial Bacteria

合作研究:使用人造细菌对微生物与生物材料之间的微米和纳米尺度接触相互作用进行受控研究

基本信息

  • 批准号:
    1761060
  • 负责人:
  • 金额:
    $ 26.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-01 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

Moving bacteria and cells transport themselves though very dense environments of long molecules during normal biological processes and disease. Examples are sperm that travel through mucus in reproduction, bacteria of the nose, lung or gut penetrating mucus during infection, and soil and oceanic bacteria migrating through a bacterial mat of long-chain molecules. The molecules of mucus and other molecules of the body are often about the same length as a microbe. This means that individual and unpredictable interactions between microbes and molecules change how the microbes move. Experimental evidence suggests that microbial transport though such materials could be dominated by direct contact interactions with the individual molecules. Contact interactions are difficult to measure and their effect on locomotion is difficult to quantify. The overall goal of this research is to quantify the effect of direct contact interactions on the propulsion of bacteria. The research will use novel artificial bacteria, 'microrobots', and manufactured mucus to discover which contact interactions dominate transport. The data will improve our ability to understand, perhaps to control, the movement and spread of microorganisms in real-world environments. The investigators will work with local K-12 students in an outreach program named "Move Like a Microbe." The goal of the outreach is to intrigue the students using new understanding of bacterial mobility and encourage them into a science or technology (STEM) path in their later education. Understanding the nanomechanics of microbe transport also will improve our abilities to control disease and understand normal bacterial behavior.Microstructural interactions with swimming microorganisms have mostly been investigated using hydrodynamic and mechanical models. There has been no in-depth examination of the role of contact interactions mediated by electrostatic forces, van der Waals attraction, and biochemical bonding. This research will advance understanding of bacterial transport by combining new microrobotic artificial bacteria systems and a novel semisynthetic mucus to allow well-controlled and well-characterized experiments. The artificial models allow control of density, stiffness, surface charge, surface chemistry, and micromechanical properties, to clarify the relative importance of hydrodynamic, close-range, and nanoscale contact interactions for microbial transport through biological media. Numerical modeling will be used to integrate the interactions into quantitative models of transport. Finally, natural bacteria will be observed moving through well-defined biomaterials and their behavior will be correlated with that observed in the artificial systems, in order to identify which contact interactions are most important for biologically relevant scenarios, testing the hypothesis that contact interactions dominate the effect of organism-scale microstructure on bacterial swimming.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在正常的生物过程和疾病期间,移动的细菌和细胞通过非常密集的长分子环境运输自身。 例如,在繁殖过程中穿过粘液的精子,在感染过程中穿过粘液的鼻子、肺或肠道细菌,以及通过长链分子的细菌垫迁移的土壤和海洋细菌。粘液分子和身体的其他分子通常与微生物的长度大致相同。这意味着微生物和分子之间个体和不可预测的相互作用会改变微生物的移动方式。 实验证据表明,微生物通过此类材料的运输可能由与单个分子的直接接触相互作用主导。 接触相互作用很难测量,并且它们对运动的影响也很难量化。 这项研究的总体目标是量化直接接触相互作用对细菌推进的影响。 该研究将使用新型人造细菌、“微型机器人”和人造粘液来发现哪种接触相互作用主导运输。 这些数据将提高我们理解、或许控制微生物在现实环境中的运动和传播的能力。调查人员将与当地 K-12 学生合作开展一项名为“像微生物一样移动”的外展项目。 外展活动的目标是激发学生对细菌流动性的新认识,并鼓励他们在以后的教育中走上科学或技术 (STEM) 道路。了解微生物运输的纳米力学也将提高我们控制疾病和理解正常细菌行为的能力。游动微生物的微观结构相互作用主要是使用流体动力学和力学模型来研究的。 目前还没有对静电力、范德华引力和生化键介导的接触相互作用的作用进行深入研究。这项研究将通过结合新型微型机器人人工细菌系统和新型半合成粘液来促进对细菌运输的理解,以实现良好控制和良好表征的实验。人工模型可以控制密度、刚度、表面电荷、表面化学和微机械特性,以阐明流体动力学、近距离和纳米级接触相互作用对于微生物通过生物介质运输的相对重要性。数值模型将用于将相互作用整合到运输的定量模型中。最后,将观察天然细菌在明确定义的生物材料中移动,并且它们的行为将与在人工系统中观察到的行为相关联,以便确定哪些接触相互作用对于生物相关场景最重要,测试接触相互作用主导细菌的假设。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Heterogeneously flagellated microswimmer behavior in viscous fluids
  • DOI:
    10.1063/1.5137743
  • 发表时间:
    2020-03-01
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Rogowski, Louis William;Oxner, Micah;Kim, Min Jun
  • 通讯作者:
    Kim, Min Jun
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MinJun Kim其他文献

MinJun Kim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MinJun Kim', 18)}}的其他基金

Collaborative Research: Magnetically-Controlled Modules with Reconfigurable Self-Assembly and Disassembly
合作研究:具有可重构自组装和拆卸功能的磁控模块
  • 批准号:
    2130775
  • 财政年份:
    2022
  • 资助金额:
    $ 26.89万
  • 项目类别:
    Standard Grant
NSF-BSF: Modeling and Control of Collective Dynamics for Externally Driven Planar Microswimmers
NSF-BSF:外部驱动平面微型游泳器集体动力学的建模和控制
  • 批准号:
    2123824
  • 财政年份:
    2021
  • 资助金额:
    $ 26.89万
  • 项目类别:
    Standard Grant
Collaborative Research: Ultrasensitive Nucleic Acid Sensing Tools Based on Cas Assays and Solid-State Nanopores
合作研究:基于Cas检测和固态纳米孔的超灵敏核酸传感工具
  • 批准号:
    2041340
  • 财政年份:
    2021
  • 资助金额:
    $ 26.89万
  • 项目类别:
    Standard Grant
Collaborative Research: A Stacked Plasmonic Nanopore for Tether-Free Stretching and Label-Free Sensing of hSTf Dynamics and Complex Formation at Ultra-Low Concentrations
合作研究:堆叠式等离子体纳米孔,用于超低浓度下 hSTf 动力学和复杂形成的无绳拉伸和无标记传感
  • 批准号:
    2022374
  • 财政年份:
    2020
  • 资助金额:
    $ 26.89万
  • 项目类别:
    Standard Grant
MRI: Acquisition of an Integrated Bionanomaterials Characterization and Imaging System for Research and Education Initiatives in Bioengineering
MRI:获取集成生物纳米材料表征和成像系统,用于生物工程研究和教育计划
  • 批准号:
    1827831
  • 财政年份:
    2018
  • 资助金额:
    $ 26.89万
  • 项目类别:
    Standard Grant
3D Motion and Swarm Control of Magnetically Propelled Microrobots for in vivo Particulate Drug Delivery
用于体内颗粒药物输送的磁力驱动微型机器人的 3D 运动和群体控制
  • 批准号:
    1634726
  • 财政年份:
    2016
  • 资助金额:
    $ 26.89万
  • 项目类别:
    Standard Grant
Collaborative Research: Bacterial Flagellar Forests: Designing a Biomaterial for Bio-Enabled Sensing and Actuation
合作研究:细菌鞭毛森林:设计用于生物传感和驱动的生物材料
  • 批准号:
    1712061
  • 财政年份:
    2016
  • 资助金额:
    $ 26.89万
  • 项目类别:
    Continuing Grant
Collaborative Research: Quantitative Analysis of Liposome Deformation at Nanoscale Using Resistive Pulse Sensing in Solid State Nanopores
合作研究:利用固态纳米孔中的电阻脉冲传感对纳米尺度脂质体变形进行定量分析
  • 批准号:
    1712069
  • 财政年份:
    2016
  • 资助金额:
    $ 26.89万
  • 项目类别:
    Standard Grant
RI: Small: Collaborative Research: Micro-Assembly Exploiting SofT RObotics (MAESTRO)
RI:小型:协作研究:微装配开发软机器人 (MAESTRO)
  • 批准号:
    1617949
  • 财政年份:
    2016
  • 资助金额:
    $ 26.89万
  • 项目类别:
    Continuing Grant
RI: Small: Collaborative Research: Micro-Assembly Exploiting SofT RObotics (MAESTRO)
RI:小型:协作研究:微装配开发软机器人 (MAESTRO)
  • 批准号:
    1712088
  • 财政年份:
    2016
  • 资助金额:
    $ 26.89万
  • 项目类别:
    Continuing Grant

相似国自然基金

非受控高动态巨型星座网络高可靠理论及其关键技术研究
  • 批准号:
    62372259
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
鳗草海草床种苗补充限制的基本特征与关键受控因素研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
受控离散时间马氏链风险灵敏性平均准则研究
  • 批准号:
    12271454
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
基于受控量子计算短密钥密码的新型量子签名协议研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
线性方程组量子求解算法(HHL算法)的精确受控旋转研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Protein engineering and processing of plant viral templates for controlled nanoparticle synthesis
合作研究:用于受控纳米颗粒合成的植物病毒模板的蛋白质工程和加工
  • 批准号:
    2426065
  • 财政年份:
    2024
  • 资助金额:
    $ 26.89万
  • 项目类别:
    Continuing Grant
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
  • 批准号:
    2318829
  • 财政年份:
    2023
  • 资助金额:
    $ 26.89万
  • 项目类别:
    Continuing Grant
Integrative Data Science Approach to Advance Care Coordination of ADRD by Primary Care Providers
综合数据科学方法促进初级保健提供者对 ADRD 的护理协调
  • 批准号:
    10722568
  • 财政年份:
    2023
  • 资助金额:
    $ 26.89万
  • 项目类别:
School-Partnered Collaborative Care (SPACE) for Pediatric Type 1 Diabetes
针对儿童 1 型糖尿病的学校合作协作护理 (SPACE)
  • 批准号:
    10640614
  • 财政年份:
    2023
  • 资助金额:
    $ 26.89万
  • 项目类别:
Telehealth-Enhanced Patient-Oriented Recovery Trajectory After Intensive Care
远程医疗增强重症监护后以患者为中心的康复轨迹
  • 批准号:
    10667691
  • 财政年份:
    2023
  • 资助金额:
    $ 26.89万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了