RUI: Collaborative Research: Molecular mechanisms of dendrite development, maintenance and plasticity: in vivo single-neuron analysis in C. elegans

RUI:合作研究:树突发育、维持和可塑性的分子机制:线虫体内单神经元分析

基本信息

  • 批准号:
    1754986
  • 负责人:
  • 金额:
    $ 23.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-01-15 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Brain development involves the formation and fine-tuning of complex networks of connections between nerve cells. These connections occur at specialized sites of nerve cell contact, often formed on thorn-like structures (called spines) that protrude from the nerve cells. Precisely-controlled structural changes in spines are important for proper learning and memory. Some neuro-developmental disorders are the result of improper spine outgrowth, or a failure to properly maintain spines. These dysfunctions result in abnormalities in nerve cell communication that decrease learning and memory performance. Preliminary work for the present project has shown that connections between some nerve cells in the nematode worm Caenorhabditis elegans have spine-like structures, similar to those in the human brain. This project will investigate the mechanisms by which spines are formed during normal development, and maintained throughout life. The research uses C. elegans worms because of the powerful genetic tools developed in this species for identifying and understanding molecular pathways that control basic cell functions. By applying these tools to the mechanisms underlying spine outgrowth and maintenance, we expect to gain critical novel insights into the requirements for healthy brain function. Important insights into neurodevelopmental disorders may also be provided. This research project will also support the training of future scientists by providing mentored research experiences for undergraduate and graduate students, as well as local high school teachers. Recruitment for these activities will emphasize participants from under-represented groups in science.Most excitatory synapses in the mammalian brain occur at dendritic spines, which are small actin-rich membrane protrusions that house neurotransmitter receptors and other signaling machinery. Spines are essential structures in synaptic connectivity and plasticity, and underlie important processes of learning and memory. Despite recent progress in defining molecular mechanisms that regulate spine morphological changes, many questions about the basic biology of spine formation, maintenance and plasticity remain unanswered. The role of the extracellular matrix (ECM) in regulating spine development and maintenance is particularly poorly understood. The present studies will employ genetic tools available in the nematode worm Caenorhabditis elegans to identify and characterize molecular pathways involved in synapse development and plasticity. Preliminary work revealed that excitatory synaptic contacts onto C. elegans GABAergic neurons occur at spine-like protrusions. This collaborative project, incorporating expertise from the Lemons, Francis and B'nard labs, will investigate ECM-mediated mechanisms for guiding dendrite development and dynamics, as well as applying unbiased forward genetic screening to uncover novel cellular and molecular pathways that regulate dendritic spines in vivo.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大脑发育涉及神经细胞之间复杂连接网络的形成和微调。这些连接发生在神经细胞接触的特殊部位,通常形成于从神经细胞突出的刺状结构(称为刺)上。精确控制的脊柱结构变化对于正确的学习和记忆非常重要。一些神经发育障碍是由于脊柱生长不当或未能正确维护脊柱造成的。这些功能障碍会导致神经细胞通讯异常,从而降低学习和记忆能力。本项目的初步工作表明,线虫秀丽隐杆线虫中的一些神经细胞之间的连接具有类似脊柱的结构,类似于人脑中的结构。该项目将研究脊柱在正常发育过程中形成并在整个生命过程中维持的机制。该研究使用秀丽隐杆线虫,因为该物种开发出强大的遗传工具,可用于识别和理解控制基本细胞功能的分子途径。通过将这些工具应用于脊柱生长和维护的机制,我们期望获得关于健康大脑功能的要求的重要新颖见解。还可以提供对神经发育障碍的重要见解。该研究项目还将通过为本科生和研究生以及当地高中教师提供指导研究经验来支持未来科学家的培训。这些活动的招募将强调来自科学界代表性不足群体的参与者。哺乳动物大脑中的大多数兴奋性突触发生在树突棘上,树突棘是富含肌动蛋白的小膜突起,容纳神经递质受体和其他信号机制。棘是突触连接和可塑性的重要结构,是学习和记忆的重要过程的基础。尽管最近在定义调节脊柱形态变化的分子机制方面取得了进展,但有关脊柱形成、维持和可塑性的基本生物学的许多问题仍未得到解答。人们对细胞外基质(ECM)在调节脊柱发育和维护中的作用知之甚少。目前的研究将利用线虫秀丽隐杆线虫中可用的遗传工具来识别和表征涉及突触发育和可塑性的分子途径。初步研究表明,线虫 GABA 能神经元的兴奋性突触接触发生在棘状突起处。该合作项目融合了 Lemons、Francis 和 B'nard 实验室的专业知识,将研究 ECM 介导的引导树突发育和动力学的机制,并应用公正的正向遗传筛选来发现调节树突棘的新细胞和分子途径。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Integrins Have Cell-Type-Specific Roles in the Development of Motor Neuron Connectivity
整合素在运动神经元连接的发展中具有细胞类型特异性的作用
  • DOI:
    10.3390/jdb7030017
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Oliver, Devyn;Norman, Emily;Bates, Heather;Avard, Rachel;Rettler, Monika;Bénard, Claire Y.;Francis, Michael M.;Lemons, Michele L.
  • 通讯作者:
    Lemons, Michele L.
CASE STUDY Phantom Limb Pain: Feeling Sensation from a limb that is No Longer Present and What it can Reveal About Our Brain Anatomy
案例研究幻肢痛:对不再存在的肢体的感觉以及它可以揭示我们的大脑解剖结构
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michele Lemons其他文献

Michele Lemons的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于交易双方异质性的工程项目组织间协作动态耦合研究
  • 批准号:
    72301024
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向协作感知车联网的信息分发时效性保证关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
数据物理驱动的车间制造服务协作可靠性机理与优化方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
  • 批准号:
    2346565
  • 财政年份:
    2024
  • 资助金额:
    $ 23.96万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
  • 批准号:
    2346564
  • 财政年份:
    2024
  • 资助金额:
    $ 23.96万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: IRES Track I: From fundamental to applied soft matter: research experiences in Mexico
合作研究:RUI:IRES 第一轨:从基础到应用软物质:墨西哥的研究经验
  • 批准号:
    2426728
  • 财政年份:
    2024
  • 资助金额:
    $ 23.96万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Glacier resilience during the Holocene and late Pleistocene in northern California
合作研究:RUI:北加州全新世和晚更新世期间的冰川恢复力
  • 批准号:
    2303409
  • 财政年份:
    2024
  • 资助金额:
    $ 23.96万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Wave Engineering in 2D Using Hierarchical Nanostructured Dynamical Systems
合作研究:RUI:使用分层纳米结构动力系统进行二维波浪工程
  • 批准号:
    2337506
  • 财政年份:
    2024
  • 资助金额:
    $ 23.96万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了