NSF/CBMS Regional Conference in the Mathematical Sciences - Applications of Polynomial Systems - June 4-8, 2018

NSF/CBMS 数学科学区域会议 - 多项式系统的应用 - 2018 年 6 月 4-8 日

基本信息

  • 批准号:
    1741730
  • 负责人:
  • 金额:
    $ 3.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

This National Science Foundation award provides support for a CBMS Regional Conference in the Mathematical Sciences on the topic "Applications of Polynomial Systems," to be hosted at Texas Christian University in Fort Worth, TX, from June 4, 2018, to June 8, 2018. Sponsored by the Conference Board of the Mathematical Sciences, each five-day conference in this Regional Conference series features a distinguished lecturer who delivers ten lectures on a topic of important current research in one sharply focused area of the mathematical sciences; the lecturer subsequently prepares an expository monograph based upon these lectures. The principal lecturer for this conference is David A. Cox, the William J. Walker Professor of Mathematics at Amherst College.  Professor Cox is a world-renowned master expositor and award-winning author of several popular and highly-cited books in the mathematical area of applied algebraic geometry. While this field of mathematics dates back at least as far as the 18th century, developments in the affordability of computers with substantial memory and parallel processing power have led to a modern renaissance in both practical applications and new computational questions. Professor Cox's lectures will discuss historical developments of the area in light of modern perspectives, leading up to current research and applications to such diverse fields as computer aided design, rigidity of mechanical linkages, and chemical reaction networks. Each pair of lectures by Professor Cox will develop a chosen topic and be followed by a further lecture by a specialist he has hand-picked to provide a deeper look at the forefront of current research on that topic. Additional conference activities will help participants develop a broad and deep understanding of current research problems while also providing opportunities for young researchers and members of underrepresented groups in mathematics to interact with leaders in the area and with each other.Professor Cox will lecture on the study of polynomial systems via methods of algebraic geometry and commutative algebra, including 1) a history of results underpinning computational methods in algebraic geometry and commutative algebra; 2) modern computational approaches to solving polynomial systems and recent advances; and 3) a selection of current applications, with an eye toward helping participants solve their own applied problems. Specific lecture pair topics will include Elimination Theory, Polynomial Systems in the Real World, Geometric Modeling, Geometric Constraint Theory, and Chemical Reaction Networks. Supplementary conference activities will include a poster session, a software demonstration, a panel discussion, and a problem session designed to help new researchers enter the field through active participation. The conference is also anticipated to have significant regional impact by bolstering collaboration among the strong concentration of researchers in applied and computational algebraic geometry in the Texas area. The conference web site can be found at http://faculty.tcu.edu/gfriedman/CBMS2018/.
该国家科学基金会奖为 CBMS 数学科学区域会议提供支持,会议主题为“多项式系统的应用”,该会议将于 2018 年 6 月 4 日至 8 日在德克萨斯州沃斯堡的德克萨斯基督教大学主办由数学科学联合会赞助,该区域会议系列中每场为期五天的会议都有一位杰出的讲师,他就以下主题发表十场讲座数学科学的一个重点领域的当前重要研究主题;讲师随后根据这些讲座准备了一本说明性专着。阿默斯特学院考克斯教授是世界著名的阐释大师,也是应用代数几何数学领域多本热门且被高引用书籍的获奖作者。虽然这一数学领域的历史至少可以追溯到 18 世纪,但具有大量内存和并行处理能力的计算机的可负担性的发展导致了实际应用和新计算问题的现代复兴,考克斯教授的讲座将讨论历史问题。从现代角度来看该领域的发展,导致计算机辅助设计、机械连接刚性和化学反应网络等不同领域的当前研究和应用。考克斯教授将提出一个选定的主题,然后由他精心挑选的专家进行进一步的演讲,以更深入地了解该主题的当前研究前沿。其他会议活动将帮助参与者形成广泛而深入的理解。考克斯教授将通过以下方法讲授多项式系统的研究:代数几何和交换代数,包括 1)支撑代数几何和交换代数计算方法的结果的历史;2)解决多项式系统的现代计算方法和最新进展;3)当前应用的选择,旨在提供帮助参与者解决自己的应用问题。具体的讲座主题将包括消除理论、现实世界中的多项式系统、几何建模、几何。约束理论和化学反应网络补充会议活动将包括海报会议、软件演示、小组讨论和问题会议,旨在帮助新研究人员通过积极参与进入该领域。通过支持德克萨斯州应用和计算代数几何领域的研究人员之间的合作来产生影响,可以在会议网站上找到。网址:http://faculty.tcu.edu/gfriedman/CBMS2018/。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Greg Friedman其他文献

Generalizations of Intersection Homology and Perverse Sheaves with Duality over the Integers
交集同调与整数对偶性反常滑轮的推广
Basic Properties of Singular and PL Intersection Homology
奇异与PL交集同调的基本性质
  • DOI:
    10.1017/9781316584446.005
  • 发表时间:
    2020-09-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Greg Friedman
  • 通讯作者:
    Greg Friedman
Mayer–Vietoris Arguments and Further Properties of Intersection Homology
Mayer-Vietoris 论证和交集同调的进一步性质
  • DOI:
    10.1017/9781316584446.006
  • 发表时间:
    2020-09-01
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Greg Friedman
  • 通讯作者:
    Greg Friedman
Flowing from intersection product to cup product
从交叉产品流向杯产品
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Greg Friedman;A. Medina;D. Sinha
  • 通讯作者:
    D. Sinha
Triangulations of 3-dimensional pseudomanifolds with an application to state-sum invariants
3 维伪流形的三角剖分及其在状态和不变量中的应用
  • DOI:
    10.2140/agt.2004.4.521
  • 发表时间:
    2004-07-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Markus Banagl;Greg Friedman
  • 通讯作者:
    Greg Friedman

Greg Friedman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Greg Friedman', 18)}}的其他基金

Homological invariants of manifolds and stratified spaces
流形和分层空间的同调不变量
  • 批准号:
    1308306
  • 财政年份:
    2013
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences - Hodge Theory, Complex Geometry, and Representation Theory
NSF/CBMS 数学科学区域会议 - 霍奇理论、复几何和表示论
  • 批准号:
    1137952
  • 财政年份:
    2012
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences: Topology, C*- algebras, and String Duality, June 2008
NSF/CBMS 数学科学区域会议:拓扑、C*- 代数和弦对偶性,2008 年 6 月
  • 批准号:
    0735233
  • 财政年份:
    2008
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant

相似国自然基金

预冲击降低SWL导致的肾小管上皮细胞膜PS残基外翻及CBMs表达上调
  • 批准号:
    81000293
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

NSF-CBMS Regional Research Conference, Nonstandard Finite Difference Methods: Advances in Theory and Applications
NSF-CBMS 区域研究会议,非标准有限差分方法:理论与应用进展
  • 批准号:
    1933548
  • 财政年份:
    2020
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
NSF/CBMS Regional Research Conferences in Mathematics
NSF/CBMS 数学区域研究会议
  • 批准号:
    1804259
  • 财政年份:
    2018
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
CBMS Conference: Topological and Geometric Methods in Quantum Field Theory NSF-CBMS Regional Conference in the Mathematical Sciences
CBMS 会议:量子场论中的拓扑和几何方法 NSF-CBMS 数学科学区域会议
  • 批准号:
    1642636
  • 财政年份:
    2016
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences: Combinatorial Zeta and L-functions
NSF/CBMS 数学科学区域会议:组合 Zeta 和 L 函数
  • 批准号:
    1341413
  • 财政年份:
    2014
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
NSF/CBMS Regional Conference on Higher Representation Theory-June 19-23, 2014
NSF/CBMS 更高表征理论区域会议 - 2014 年 6 月 19-23 日
  • 批准号:
    1347289
  • 财政年份:
    2014
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了