BIGDATA: IA: Distributed Semi-Supervised Training of Deep Models and Its Applications in Video Understanding

BIGDATA:IA:深度模型的分布式半监督训练及其在视频理解中的应用

基本信息

项目摘要

This project investigates semi-supervised training of deep neural network models using large-scale labeled and unlabeled data in a distributed fashion. Deep neural networks have recently been widely deployed in artificial intelligence and related scientific fields, largely attributing to well-labeled big datasets and improved computing capabilities. However, the unlabeled data, which is often bigger, is inherently ruled out by the prevailing supervised training of the deep models. It is indeed highly challenging to model the unlabeled parts of many recent and emerging datasets, which are often unstructured and distributed over different nodes of a network (e.g., the videos captured by a camera network). This project aims to explore how to effectively use the unlabeled and distributed data to complement the discriminative cues of the labeled data, to jointly learn accurate and robust deep models. The research seamlessly unifies machine learning, computer vision, and parallel computing, and fosters unique interdisciplinary research and education programs for the graduate and undergraduate students.Despite the progress on semi-supervised learning and deep learning, the confluence of these two is mostly studied on a small scale in single-machine environment. However, many new datasets easily grow beyond the computation or even storage capacity of a single machine. Hence, it becomes a pressing need to investigate the semi-supervised learning of deep models on parallel computing platforms. To better account for this scenario, this project develops improved network architectures to facilitate the parallel training, and the training procedure developed adaptively switches between synchronized and asynchronized modes for optimal efficiency. The main idea is to incorporate a parametric distribution to the neural network and use covariate matching to coordinate the network behaviors across different machines. The researchers also explore a novel application, extreme-scale spatial-temporal action annotation of video sequences, to benchmark the algorithms and frameworks in this project.
该项目研究以分布式方式使用大规模标记和未标记数据对深度神经网络模型进行半监督训练。深度神经网络最近在人工智能和相关科学领域得到了广泛部署,很大程度上归功于标记良好的大数据集和计算能力的提高。然而,未标记的数据通常更大,本质上被流行的深度模型监督训练所排除。对许多最近和新兴数据集的未标记部分进行建模确实非常具有挑战性,这些数据集通常是非结构化的并且分布在网络的不同节点上(例如,摄像机网络捕获的视频)。该项目旨在探索如何有效地利用未标记的分布式数据来补充标记数据的判别线索,共同学习准确且鲁棒的深度模型。该研究无缝地统一了机器学习、计算机视觉和并行计算,并为研究生和本科生培育了独特的跨学科研究和教育项目。尽管半监督学习和深度学习取得了进展,但这两者的融合主要集中在以下方面:小规模的单机环境。然而,许多新数据集很容易超出单台机器的计算甚至存储容量。因此,研究并行计算平台上深度模型的半监督学习成为迫切需要。为了更好地考虑这种情况,该项目开发了改进的网络架构以促进并行训练,并且开发的训练程序自适应地在同步和异步模式之间切换以获得最佳效率。主要思想是将参数分布合并到神经网络中,并使用协变量匹配来协调不同机器之间的网络行为。研究人员还探索了一种新颖的应用,即视频序列的超大规模时空动作注释,以对该项目中的算法和框架进行基准测试。

项目成果

期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Semi Supervised Semantic Segmentation Using Generative Adversarial Network
使用生成对抗网络的半监督语义分割
Visual Text Correction
视觉文本校正
  • DOI:
    10.1007/978-3-030-01261-8_10
  • 发表时间:
    2018-01-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Amir Mazaheri;M. Shah
  • 通讯作者:
    M. Shah
How Local Is the Local Diversity? Reinforcing Sequential Determinantal Point Processes with Dynamic Ground Sets for Supervised Video Summarization
当地的多样性有多本地化?
  • DOI:
    10.1007/978-3-030-01237-3_10
  • 发表时间:
    2018-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Li, Y.;Wang, L.;Yang, T.;Gong, B.
  • 通讯作者:
    Gong, B.
NATTACK: Learning the Distributions of Adversarial Examples for an Improved Black-Box Attack on Deep Neural Networks
NATTACK:学习对抗样本的分布以改进深度神经网络的黑盒攻击
Photography and Exploration of Tourist Locations Based on Optimal Foraging Theory
基于最优觅食理论的旅游地摄影与探索
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mubarak Shah其他文献

Lung-CADex: Fully automatic Zero-Shot Detection and Classification of Lung Nodules in Thoracic CT Images
Lung-CADex:胸部 CT 图像中肺结节的全自动零样本检测和分类
  • DOI:
  • 发表时间:
    2024-07-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Furqan Shaukat;Syed Muhammad Anwar;Abhijeet Parida;Van Lam;M. Linguraru;Mubarak Shah
  • 通讯作者:
    Mubarak Shah
Deep affinity network for multiple object tracking
用于多目标跟踪的深度亲和力网络
VisDrone-SOT2020: The Vision Meets Drone Single Object Tracking Challenge Results
VisDrone-SOT2020:视觉满足无人机单目标跟踪挑战结果
  • DOI:
    10.1007/978-3-030-66823-5_44
  • 发表时间:
    2024-09-13
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Heng Fan;Longyin Wen;Dawei Du;Pengfei Zhu;Qinghua Hu;Haibin Ling;Mubarak Shah;Biao Wang
  • 通讯作者:
    Biao Wang
Egocentric RGB+Depth Action Recognition in Industry-Like Settings
类似行业设置中以自我为中心的 RGB 深度动作识别
  • DOI:
    10.48550/arxiv.2309.13962
  • 发表时间:
    2023-09-25
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jyoti Kini;Sarah Fleischer;I. Dave;Mubarak Shah
  • 通讯作者:
    Mubarak Shah
Robust Image Geolocalization
强大的图像地理定位
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Akhil Arularasu;P. Kulkarni;Gaurav Kumar;Mubarak Shah
  • 通讯作者:
    Mubarak Shah

Mubarak Shah的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mubarak Shah', 18)}}的其他基金

REU Site: Research Experience for Undergraduates in Computer Vision
REU 网站:计算机视觉本科生的研究经验
  • 批准号:
    2349386
  • 财政年份:
    2024
  • 资助金额:
    $ 66.24万
  • 项目类别:
    Standard Grant
Scholarships, Academic, and Social Supports to Provide Low-Income Transfers Students Opportunities for Nurtured Growth in AI
奖学金、学术和社会支持为低收入转学生提供促进人工智能发展的机会
  • 批准号:
    2321986
  • 财政年份:
    2024
  • 资助金额:
    $ 66.24万
  • 项目类别:
    Continuing Grant
REU Site: Research Experience for Undergraduates in Computer Vision
REU 网站:计算机视觉本科生的研究经验
  • 批准号:
    2050731
  • 财政年份:
    2021
  • 资助金额:
    $ 66.24万
  • 项目类别:
    Standard Grant
REU Site: Research Experience for Undergraduates in Computer Vision
REU 网站:计算机视觉本科生的研究经验
  • 批准号:
    1757858
  • 财政年份:
    2018
  • 资助金额:
    $ 66.24万
  • 项目类别:
    Standard Grant
CRI: II-New: Cognitive Mechanisms and Computational Modeling of Gaze Control During Scene Free Viewing, Visual Search, and Daily Tasks
CRI:II-新:场景自由观看、视觉搜索和日常任务期间注视控制的认知机制和计算模型
  • 批准号:
    1823276
  • 财政年份:
    2018
  • 资助金额:
    $ 66.24万
  • 项目类别:
    Standard Grant
STEM TRansfer Students Opportunity for Nurtured Growth (STRONG)
STEM 转学生提供培育成长的机会(强)
  • 批准号:
    1742424
  • 财政年份:
    2018
  • 资助金额:
    $ 66.24万
  • 项目类别:
    Standard Grant
RET Site: Research Experiences for Teachers in Computer Vision and Bio-Medical Imaging
RET 网站:计算机视觉和生物医学成像教师的研究经验
  • 批准号:
    1542439
  • 财政年份:
    2016
  • 资助金额:
    $ 66.24万
  • 项目类别:
    Standard Grant
REU Site: NSF Research Experience for Undergraduates in Computer Vision
REU 网站:NSF 计算机视觉本科生研究经验
  • 批准号:
    1461121
  • 财政年份:
    2015
  • 资助金额:
    $ 66.24万
  • 项目类别:
    Standard Grant
REU Site: Research Experience for Undergraduates in Computer Vision
REU 网站:计算机视觉本科生的研究经验
  • 批准号:
    1156990
  • 财政年份:
    2012
  • 资助金额:
    $ 66.24万
  • 项目类别:
    Standard Grant
Students Actualizing Talent at Education?s Subsequent Stages (STATESS)
学生在教育后续阶段实现才能(STATESS)
  • 批准号:
    0966249
  • 财政年份:
    2010
  • 资助金额:
    $ 66.24万
  • 项目类别:
    Standard Grant

相似国自然基金

甘蓝型油菜BnaA01.IA调控花序结构的分子机制解析
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Ia型超新星抛射物元素丰度与时域观测特征相关性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
年轻Ia型超新星遗迹在湍动背景场中的数值模拟研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大豆GmCPSF73-Ia调控侧根发育的分子机制
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
核因子IA通过调节破骨细胞分化影响骨稳态和骨量的作用及其机制研究
  • 批准号:
    82072389
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目

相似海外基金

I-Corps: Non-Invasive Software Tool for Risk Assessment of Intracranial Aneurysms (IA)
I-Corps:用于颅内动脉瘤 (IA) 风险评估的非侵入性软件工具
  • 批准号:
    2402381
  • 财政年份:
    2024
  • 资助金额:
    $ 66.24万
  • 项目类别:
    Standard Grant
The Realizability of the Double-Detonation Mechanism for Type Ia Supernovae
Ia型超新星双爆机制的可实现性
  • 批准号:
    2307442
  • 财政年份:
    2023
  • 资助金额:
    $ 66.24万
  • 项目类别:
    Standard Grant
Addressing Weight Bias Internalization to Improve Adolescent Weight Management Outcomes
解决体重偏差内在化问题,改善青少年体重管理成果
  • 批准号:
    10642307
  • 财政年份:
    2023
  • 资助金额:
    $ 66.24万
  • 项目类别:
Soluble epoxide hydrolase and epoxide fatty acid involvement in corneal injury after ammonia exposure: Mechanisms of injury and potential therapeutics using sEH inhibitors and biostable EpFA mimics.
可溶性环氧化物水解酶和环氧化物脂肪酸参与氨暴露后角膜损伤:损伤机制和使用 sEH 抑制剂和生物稳定 EpFA 模拟物的潜在治疗方法。
  • 批准号:
    10708436
  • 财政年份:
    2023
  • 资助金额:
    $ 66.24万
  • 项目类别:
IgE Suppressing Berberine Nanomedicine for Treatment of Food Allergies
抑制 IgE 的小檗碱纳米药物治疗食物过敏
  • 批准号:
    10698900
  • 财政年份:
    2023
  • 资助金额:
    $ 66.24万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了