Sparsity-promoting optimal design of large-scale networks of dynamical systems
大规模动力系统网络的稀疏性优化优化设计
基本信息
- 批准号:1739210
- 负责人:
- 金额:$ 11.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-01-04 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Sparsity-promoting optimal design of large-scale networks of dynamical systemsThe proposal introduces new methods for the design of large-scale networks of dynamical systems. Systems of this type arise in applications ranging from distributed power generation, to coordination of unmanned aerial vehicles and deployment of teams of robotic agents, to control of fluid flows around wind turbines and vehicles, to control of segmented mirrors in extremely large telescopes. One of the major challenges in systems with large number of degrees of freedom is the development of analytical and computational methods for their tractable analysis and design.Interactions between subsystems often induce complex dynamical responses that cannot be predicted by analyzing subsystems in isolation. Blackouts in power networks, congestion in transportation networks, spatio-temporal oscillations in biochemical networks, turbulence in fluid flows, and the spread of information in social networks illustrate the complex and seemingly unpredictable behavior that arises in systems of high dynamical order. The broader impacts of the proposed work range from improved performance and suppression of blackouts in power systems to systematic design of sensor networks and multi-agent systems. The educational aspect of the proposal is to develop a new introductory course on analysis and design of networks. This course will be aimed at attracting students from diverse engineering departments at senior undergraduate and first year graduate levels.The intellectual merit lies in the development of theory and techniques for structure identification and optimal design of large networks of dynamical systems. The PI will combine tools and ideas from control theory, optimization, and compressive sensing to achieve an optimal tradeoff between network performance and controller sparsity. The proposed approach involves both structure identification and structured optimal design steps. In the structure identification step, sparsity will be induced by regularizing an optimal control problem with a penalty on communication requirements in the distributed controller. In contrast to previous efforts, this penalty will reflect the fact that sparsity should be enforced in a specific set of coordinates. After having identified a controller structure, the structured optimal design step will optimize the network performance over the identified structure. Alongside the sparse feedback synthesis, the PI will address the critical question of optimal sensor and actuator selection in large-scale networks.Although, in general, finding the solution to this problem requires an intractable combinatorial search, this award will draw upon recent developments in sparse representations to cast it as a semidefinite program (SDP). While the resulting SDP can be solved using general-purpose solvers, the PI will develop customized algorithms to exploit the problem structure and reduce computational complexity. Such customized solvers will be capable of dealing with large problems.that general-purpose solvers are not able to handle.
大规模动力系统网络的稀疏性促进优化设计该提案为大规模动力系统网络的设计引入了新方法。此类系统的应用范围广泛,从分布式发电,到无人机的协调和机器人代理团队的部署,到控制风力涡轮机和车辆周围的流体流动,到控制超大望远镜中的分段镜。具有大量自由度的系统的主要挑战之一是开发易于分析和设计的分析和计算方法。子系统之间的相互作用通常会引起复杂的动态响应,而这些动态响应无法通过单独分析子系统来预测。电力网络中的停电、交通网络中的拥堵、生化网络中的时空振荡、流体流动中的湍流以及社交网络中的信息传播都说明了高动态秩序系统中出现的复杂且看似不可预测的行为。拟议工作的更广泛影响包括从提高电力系统的性能和抑制停电到传感器网络和多代理系统的系统设计。该提案的教育方面是开发一门新的网络分析和设计入门课程。本课程旨在吸引来自不同工程系的高年级本科生和一年级研究生水平的学生。其智力价值在于发展动力系统大型网络的结构识别和优化设计的理论和技术。 PI 将结合控制理论、优化和压缩感知的工具和思想,以实现网络性能和控制器稀疏性之间的最佳权衡。所提出的方法涉及结构识别和结构化优化设计步骤。在结构识别步骤中,将通过规范最优控制问题来引入稀疏性,并对分布式控制器中的通信要求进行惩罚。与之前的努力相比,这种惩罚将反映出应该在一组特定的坐标中强制执行稀疏性的事实。确定控制器结构后,结构化优化设计步骤将在所确定的结构上优化网络性能。除了稀疏反馈综合之外,PI 将解决大规模网络中最佳传感器和执行器选择的关键问题。虽然一般来说,找到该问题的解决方案需要棘手的组合搜索,但该奖项将借鉴最近的发展稀疏表示将其转换为半定程序(SDP)。虽然生成的 SDP 可以使用通用求解器来求解,但 PI 将开发定制算法来利用问题结构并降低计算复杂性。这种定制的求解器将能够处理通用求解器无法处理的大问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mihailo Jovanovic其他文献
Harnessing Metformin’s Immunomodulatory Effects on Immune Cells to Combat Breast Cancer
利用二甲双胍对免疫细胞的免疫调节作用来对抗乳腺癌
- DOI:
10.3390/ijms25115869 - 发表时间:
2024-05-28 - 期刊:
- 影响因子:5.6
- 作者:
Andjela Petrovic;Ivan Jovanović;Bojan Stojanović;Milica N Dimitrijević Stojanović;Bojan Stojanović;M. Jurišević;Bojana Simović Marković;Marina Jovanovic;Milan M Jovanović;Mihailo Jovanovic;N. Gajović - 通讯作者:
N. Gajović
Mihailo Jovanovic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mihailo Jovanovic', 18)}}的其他基金
The proximal augmented Lagrangian method for distributed and embedded nonsmooth composite optimization
用于分布式嵌入式非光滑复合优化的近端增广拉格朗日方法
- 批准号:
1809833 - 财政年份:2018
- 资助金额:
$ 11.32万 - 项目类别:
Standard Grant
Distributionally Robust Control and Incentives with Safety and Risk Constraints
具有安全和风险约束的分布式鲁棒控制和激励
- 批准号:
1708906 - 财政年份:2017
- 资助金额:
$ 11.32万 - 项目类别:
Standard Grant
CRII: CPS: Information-Constrained Cyber-Physical Systems for Supermarket Refrigerator Energy and Inventory Management
CRII:CPS:超市冰箱能源和库存管理的信息受限网络物理系统
- 批准号:
1657100 - 财政年份:2017
- 资助金额:
$ 11.32万 - 项目类别:
Standard Grant
Low-complexity Stochastic Modeling and Control of Turbulent Shear Flows
湍流剪切流的低复杂度随机建模和控制
- 批准号:
1739243 - 财政年份:2017
- 资助金额:
$ 11.32万 - 项目类别:
Standard Grant
Low-complexity Stochastic Modeling and Control of Turbulent Shear Flows
湍流剪切流的低复杂度随机建模和控制
- 批准号:
1363266 - 财政年份:2014
- 资助金额:
$ 11.32万 - 项目类别:
Standard Grant
Sparsity-promoting optimal design of large-scale networks of dynamical systems
大规模动力系统网络的稀疏性优化优化设计
- 批准号:
1407958 - 财政年份:2014
- 资助金额:
$ 11.32万 - 项目类别:
Standard Grant
Collaborative Research: Algorithms for Design of Structured Distributed Controllers with Application to Large-Scale Vehicular Formations
合作研究:应用于大规模车辆编队的结构化分布式控制器设计算法
- 批准号:
0927720 - 财政年份:2009
- 资助金额:
$ 11.32万 - 项目类别:
Standard Grant
CAREER: Enabling Methods for Modeling and Control of Transitional and Turbulent Wall-Bounded Shear Flows
职业:过渡和湍流壁界剪切流的建模和控制方法
- 批准号:
0644793 - 财政年份:2007
- 资助金额:
$ 11.32万 - 项目类别:
Continuing Grant
相似国自然基金
IGF-1R调控HIF-1α促进Th17细胞分化在甲状腺眼病发病中的机制研究
- 批准号:82301258
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
睡眠剥夺通过上调BMAL1/IL-17轴促进三级淋巴结构形成加重哮喘的研究
- 批准号:82300039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肿瘤细胞外囊泡ETV4活化间质微环境CAFs促进胰腺癌侵袭转移的分子机理及精准诊疗标志物研究
- 批准号:82303419
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
S100A6通过调控ZNF750组蛋白甲基化促进糖尿病角质形成细胞分化障碍的机制研究
- 批准号:82302802
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肿瘤相关成纤维细胞通过CCL5/CCR5轴促进神经内分泌前列腺癌顺铂耐药的机制研究
- 批准号:82373358
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Promoting Optimal Treatment for Community-Acquired Pneumonia in Emergency Rooms (PIONEERS): a multicentre randomized controlled trial
促进急诊室社区获得性肺炎的最佳治疗 (PIONEERS):一项多中心随机对照试验
- 批准号:
488217 - 财政年份:2023
- 资助金额:
$ 11.32万 - 项目类别:
Operating Grants
A SMART Approach to Treating Tobacco Use Disorder in Persons Living with HIV
治疗艾滋病毒感染者烟草使用障碍的明智方法
- 批准号:
10478075 - 财政年份:2019
- 资助金额:
$ 11.32万 - 项目类别:
A SMART Approach to Treating Tobacco Use Disorder in Persons Living with HIV
治疗艾滋病毒感染者烟草使用障碍的明智方法
- 批准号:
10696223 - 财政年份:2019
- 资助金额:
$ 11.32万 - 项目类别:
A SMART Approach to Treating Tobacco Use Disorder in Persons Living with HIV
治疗艾滋病毒感染者烟草使用障碍的明智方法
- 批准号:
10247005 - 财政年份:2019
- 资助金额:
$ 11.32万 - 项目类别:
Promoting Optimal Physical Exercise for Life (PROPEL) - aerobic exercise and self-management early after stroke to increase daily physical activity: a randomized trial
促进终生最佳体育锻炼 (PROPEL) - 中风后早期进行有氧运动和自我管理以增加日常体育活动:一项随机试验
- 批准号:
347351 - 财政年份:2016
- 资助金额:
$ 11.32万 - 项目类别:
Operating Grants