CPS: Medium: Collaborative Research: Augmented reality for control of reservation-based intersections with mixed flows
CPS:中:协作研究:用于控制混合流量的基于预留的交叉口的增强现实
基本信息
- 批准号:1739085
- 负责人:
- 金额:$ 22.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-10-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In urban environments, signalized intersections are a major cause of congestion since their actual capacity is very low. Autonomous vehicles are a possible leap forward: by receiving coordinated guidance information from the intersection system itself, these vehicles could navigate through the intersections with minimal speed reduction or wait times, resulting in far more efficient intersections. These smart intersections can reduce wait times by orders of magnitude, though they only work if all vehicles are autonomous: the presence of even one percent of non-autonomous vehicles would negate almost all benefits. This project investigates augmented reality technology as a scalable means of improving flow through these smart intersections by coordinating human driven vehicles with autonomous vehicles, maximizing intersection throughput while minimizing collision risks. This research will benefit the U.S. economy by providing an inexpensive, scalable way of reducing congestion without the need to ban human-driven forms of transport (pedestrians, bicycles), and without the cost of having only autonomous vehicles. This research is at the interface of several disciplines including transportation engineering, control theory and human factors.The guidance of human-driven vehicles is critical to improve the capacity of future smart intersections safely. While these intersections show considerable potential benefit in a fully automated world, their performance strongly degrades if even a few vehicles are human-driven. Given a high penetration of augmented reality devices (smart glasses), and measurement data from human-driven and autonomous vehicles, including the predicted paths of autonomous vehicles, can human-driven vehicles be guided through a smart intersection as quickly and safely as possible? The answer requires one to simultaneously solve real-time estimation and control problems, in a dynamic environment, with uncertain actuation given the performance of humans. The project develops efficient algorithms to learn the expected performance of each driver. The routing of vehicles in a reservation-based intersection system takes into account human behavior and the physical limitations of vehicles. Strategies are developed to effectively communicate guidance information to drivers in a mixed-reality setting. These results will be validated on an experimental setup involving vehicles driven by humans and equipped with augmented reality devices. This project is jointly supported with the Department of Transportation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在城市环境中,信号交叉口是造成拥堵的主要原因,因为它们的实际通行能力非常低。自动驾驶车辆可能是一次飞跃:通过从十字路口系统本身接收协调的引导信息,这些车辆可以以最小的减速或等待时间导航通过十字路口,从而使十字路口更加高效。这些智能十字路口可以将等待时间减少几个数量级,尽管它们只有在所有车辆都是自动驾驶的情况下才能发挥作用:即使是百分之一的非自动驾驶车辆的存在也会抵消几乎所有好处。该项目研究增强现实技术作为一种可扩展的手段,通过协调人类驾驶车辆与自动驾驶车辆来改善这些智能十字路口的流量,最大限度地提高十字路口吞吐量,同时最大限度地减少碰撞风险。这项研究将通过提供一种廉价、可扩展的方式来减少拥堵,从而使美国经济受益,而无需禁止人类驱动的交通方式(行人、自行车),也无需支付仅拥有自动驾驶车辆的成本。这项研究涉及交通工程、控制理论和人为因素等多个学科的交叉点。人类驾驶车辆的引导对于提高未来智能十字路口的安全能力至关重要。虽然这些交叉路口在完全自动化的世界中显示出相当大的潜在好处,但如果即使只有少数车辆是人工驾驶,它们的性能也会大幅下降。鉴于增强现实设备(智能眼镜)的高度普及,以及来自人类驾驶和自动驾驶车辆的测量数据,包括自动驾驶车辆的预测路径,是否可以引导人类驾驶车辆尽可能快速、安全地通过智能十字路口?答案需要在动态环境中同时解决实时估计和控制问题,考虑到人类的表现,驱动具有不确定性。该项目开发了有效的算法来了解每个驾驶员的预期性能。基于预订的交叉路口系统中的车辆路线考虑了人类行为和车辆的物理限制。制定策略是为了在混合现实环境中有效地向驾驶员传达指导信息。这些结果将在涉及人类驾驶并配备增强现实设备的车辆的实验装置上得到验证。 该项目由美国交通部共同支持。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Analysis of Driver Behavior in Mixed Autonomous and Non-autonomous Traffic Flows
混合自主和非自主交通流中驾驶员行为分析
- DOI:10.1177/1071181322661305
- 发表时间:2022-09-01
- 期刊:
- 影响因子:0
- 作者:Jundi Liu;L. Boyle
- 通讯作者:L. Boyle
An Inverse Reinforcement Learning Approach for Customizing Automated Lane Change Systems
用于定制自动变道系统的逆强化学习方法
- DOI:10.1109/tvt.2022.3179332
- 发表时间:2024-09-14
- 期刊:
- 影响因子:6.8
- 作者:Jundi Liu;L. Boyle;A. Banerjee
- 通讯作者:A. Banerjee
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Linda Boyle其他文献
Linda Boyle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Linda Boyle', 18)}}的其他基金
Travel Support to 2023 Automotive User Interface (AutoUI) Doctoral Colloquium; Ingolstadt, Germany; 18-21 September 2023
为 2023 年汽车用户界面 (AutoUI) 博士座谈会提供差旅支持;
- 批准号:
2335874 - 财政年份:2023
- 资助金额:
$ 22.64万 - 项目类别:
Standard Grant
FW-HTF: Collaborative Research: The Next Mobile Office: Safe and Productive Work in Automated Vehicles
FW-HTF:协作研究:下一个移动办公室:自动驾驶汽车中安全高效的工作
- 批准号:
1839666 - 财政年份:2018
- 资助金额:
$ 22.64万 - 项目类别:
Standard Grant
CAREER: Modeling the effect of operators' adaptive behavior on system safety
职业:模拟操作员自适应行为对系统安全的影响
- 批准号:
1027609 - 财政年份:2009
- 资助金额:
$ 22.64万 - 项目类别:
Continuing Grant
CAREER: Modeling the effect of operators' adaptive behavior on system safety
职业:模拟操作员自适应行为对系统安全的影响
- 批准号:
0643390 - 财政年份:2007
- 资助金额:
$ 22.64万 - 项目类别:
Continuing Grant
相似国自然基金
基于机器学习和经典电动力学研究中等尺寸金属纳米粒子的量子表面等离激元
- 批准号:22373002
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于挥发性分布和氧化校正的大气半/中等挥发性有机物来源解析方法构建
- 批准号:42377095
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
中等质量黑洞附近的暗物质分布及其IMRI系统引力波回波探测
- 批准号:12365008
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
复合低维拓扑材料中等离激元增强光学响应的研究
- 批准号:12374288
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
- 批准号:42305004
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
- 批准号:
2322534 - 财政年份:2024
- 资助金额:
$ 22.64万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
- 批准号:
2322533 - 财政年份:2024
- 资助金额:
$ 22.64万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Co-Designed Control and Scheduling Adaptation for Assured Cyber-Physical System Safety and Performance
协作研究:CPS:中:共同设计控制和调度适应,以确保网络物理系统的安全和性能
- 批准号:
2229136 - 财政年份:2023
- 资助金额:
$ 22.64万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Co-Designed Control and Scheduling Adaptation for Assured Cyber-Physical System Safety and Performance
协作研究:CPS:中:共同设计控制和调度适应,以确保网络物理系统的安全和性能
- 批准号:
2229290 - 财政年份:2023
- 资助金额:
$ 22.64万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Robust Sensing and Learning for Autonomous Driving Against Perceptual Illusion
CPS:中:协作研究:针对自动驾驶对抗知觉错觉的鲁棒感知和学习
- 批准号:
2235232 - 财政年份:2023
- 资助金额:
$ 22.64万 - 项目类别:
Standard Grant