CAREER: Weakly-Supervised Visual Scene Understanding: Combining Images and Videos, and Going Beyond Semantic Tags
职业:弱监督视觉场景理解:结合图像和视频,超越语义标签
基本信息
- 批准号:1751206
- 负责人:
- 金额:$ 50.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-01 至 2021-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The internet provides an endless supply of images and videos, replete with weakly-annotated meta-data such as text tags, GPS coordinates, timestamps, or social media sentiments. This huge resource of visual data provides an opportunity to create scalable and powerful recognition algorithms that do not depend on expensive human annotations. The research component of this project develops novel visual scene understanding algorithms that can effectively learn from such weakly-annotated visual data. The main novelty is to combine both images and videos together. The developed algorithms could have broad impact in numerous fields including AI, security, and agricultural sciences. In addition to scientific impact, the project performs complementary educational and outreach activities. Specifically, it provides mentorship to high school, undergraduate, and graduate students, teaches new undergraduate and graduate computer vision courses that have been lacking at UC Davis, and organizes an international workshop on weakly-supervised visual scene understanding.This project develops novel algorithms to advance weakly-supervised visual scene understanding in two complementary ways: (1) learning jointly with both images and videos to take advantage of their complementarity, and (2) learning from weak supervisory signals that go beyond standard semantic tags such as timestamps, captions, and relative comparisons. Specifically, it investigates novel approaches to advance tasks like fully-automatic video object segmentation, weakly-supervised object detection, unsupervised learning of object categories, and mining of localized patterns in the image/video data that are correlated with the weak supervisory signal. Throughout, the project explores ways to understand and mitigate noise in the weak labels and to overcome the domain differences between images and videos.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Internet提供了无休止的图像和视频供应,充满了弱宣布的元数据,例如文本标签,GPS坐标,时间戳或社交媒体情感。这种庞大的视觉数据资源为创建不依赖昂贵人类注释的可扩展和强大识别算法提供了机会。该项目的研究组成部分开发了新颖的视觉场景理解算法,这些算法可以有效地从这种弱宣布的视觉数据中学习。主要的新颖性是将图像和视频结合在一起。开发的算法可能在包括人工智能,安全和农业科学在内的许多领域都产生广泛的影响。除了科学影响外,该项目还进行了互补的教育和外展活动。 Specifically, it provides mentorship to high school, undergraduate, and graduate students, teaches new undergraduate and graduate computer vision courses that have been lacking at UC Davis, and organizes an international workshop on weakly-supervised visual scene understanding.This project develops novel algorithms to advance weakly-supervised visual scene understanding in two complementary ways: (1) learning jointly with both images and videos to take advantage of their互补性,以及(2)从弱监督信号中学习,这些信号超出了标准语义标签,例如时间戳,字幕和相对比较。具体而言,它研究了新的方法来推进任务,例如完全自动的视频对象分割,弱监督对象检测,无监督的对象类别的学习以及与弱监督性信号相关的图像/视频数据中局部模式的挖掘。在整个过程中,该项目探索了理解和减轻弱标签中噪音并克服图像和视频之间的领域差异的方法。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子和更广泛的影响评估标准的评估来通过评估来支持的。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Visual Attention Grounding Neural Model for Multimodal Machine Translation
- DOI:10.18653/v1/d18-1400
- 发表时间:2018-08
- 期刊:
- 影响因子:0
- 作者:Mingyang Zhou;Runxiang Cheng;Yong Jae Lee;Zhou Yu
- 通讯作者:Mingyang Zhou;Runxiang Cheng;Yong Jae Lee;Zhou Yu
Password-conditioned Anonymization and Deanonymization with Face Identity Transformers
- DOI:10.1007/978-3-030-58592-1_43
- 发表时间:2019-11
- 期刊:
- 影响因子:0
- 作者:Xiuye Gu;Weixin Luo;M. Ryoo;Yong Jae Lee
- 通讯作者:Xiuye Gu;Weixin Luo;M. Ryoo;Yong Jae Lee
You Reap What You Sow: Using Videos to Generate High Precision Object Proposals for Weakly-Supervised Object Detection
- DOI:10.1109/cvpr.2019.00964
- 发表时间:2019-06
- 期刊:
- 影响因子:0
- 作者:Krishna Kumar Singh;Yong Jae Lee
- 通讯作者:Krishna Kumar Singh;Yong Jae Lee
Delving Deeper into Anti-Aliasing in ConvNets
- DOI:10.1007/s11263-022-01672-y
- 发表时间:2020-08
- 期刊:
- 影响因子:19.5
- 作者:Xueyan Zou;Fanyi Xiao;Zhiding Yu;Yong Jae Lee
- 通讯作者:Xueyan Zou;Fanyi Xiao;Zhiding Yu;Yong Jae Lee
MixNMatch: Multifactor Disentanglement and Encoding for Conditional Image Generation
- DOI:10.1109/cvpr42600.2020.00806
- 发表时间:2019-11
- 期刊:
- 影响因子:0
- 作者:Yuheng Li;Krishna Kumar Singh;Utkarsh Ojha;Yong Jae Lee
- 通讯作者:Yuheng Li;Krishna Kumar Singh;Utkarsh Ojha;Yong Jae Lee
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yong Jae Lee其他文献
Who Moved My Cheese? Automatic Annotation of Rodent Behaviors with Convolutional Neural Networks
谁动了我的奶酪?
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Zhongzheng Ren;Adriana Noronha Annie;Vogel Ciernia;Yong Jae Lee - 通讯作者:
Yong Jae Lee
Pancytopenia Associated with Hypopituitarism in an Acromegaly Patient: A Case Report and a Review of the Literature
肢端肥大症患者全血细胞减少症与垂体机能减退相关:病例报告及文献综述
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
J. Koh;Yong Jae Lee;J. Kang;B. Choi;Y. Jeon;Sang Soo Kim;B. Kim;I. Kim - 通讯作者:
I. Kim
Sa1264 - Location Features of Early Gastric Cancer Treated with Endoscopic Submucosal Dissection
- DOI:
10.1016/s0016-5085(17)31162-9 - 发表时间:
2017-04-01 - 期刊:
- 影响因子:
- 作者:
Dae Gon Ryu;Cheol Woong Choi;Dae Hwan Kang;Hyung Wook Kim;Su Bum Park;Su Jin Kim;Hyeong Seok Nam;Hyeong Jin Kim;Jeong Seok Lee;Il Eok Jo;Yong Jae Lee - 通讯作者:
Yong Jae Lee
Mo1763 - Fecal Calprotectin Versus Fecal Immunochemical Test for the Prediction of Mucosal Healing and Endoscopic Activity in Ulcerative Colitis
- DOI:
10.1016/s0016-5085(17)32683-5 - 发表时间:
2017-04-01 - 期刊:
- 影响因子:
- 作者:
Dae Gon Ryu;Hyung Wook Kim;Cheol Woong Choi;Dae Hwan Kang;Su Bum Park;Su Jin Kim;Hyeong Seok Nam;Jeong Seok Lee;Hyeong Jin Kim;Il Eok Jo;Yong Jae Lee - 通讯作者:
Yong Jae Lee
Ray-based Color Image Segmentation
基于光线的彩色图像分割
- DOI:
10.1109/crv.2008.33 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Changhai Xu;Yong Jae Lee;B. Kuipers - 通讯作者:
B. Kuipers
Yong Jae Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yong Jae Lee', 18)}}的其他基金
CAREER: Weakly-Supervised Visual Scene Understanding: Combining Images and Videos, and Going Beyond Semantic Tags
职业:弱监督视觉场景理解:结合图像和视频,超越语义标签
- 批准号:
2150012 - 财政年份:2021
- 资助金额:
$ 50.05万 - 项目类别:
Continuing Grant
RI:Small:Collaborative Research: Understanding Human-Object Interactions from First-person and Third-person Videos
RI:Small:协作研究:从第一人称和第三人称视频中理解人与物体的交互
- 批准号:
2204808 - 财政年份:2021
- 资助金额:
$ 50.05万 - 项目类别:
Standard Grant
RI:Small:Collaborative Research: Understanding Human-Object Interactions from First-person and Third-person Videos
RI:Small:协作研究:从第一人称和第三人称视频中理解人与物体的交互
- 批准号:
1812850 - 财政年份:2018
- 资助金额:
$ 50.05万 - 项目类别:
Standard Grant
EAGER: Leveraging Synthetic Data for Visual Reasoning and Representation Learning with Minimal Human Supervision
EAGER:在最少的人类监督下利用合成数据进行视觉推理和表示学习
- 批准号:
1748387 - 财政年份:2017
- 资助金额:
$ 50.05万 - 项目类别:
Standard Grant
相似国自然基金
受力—电荷转移效应在SERS微弱机械力单颗粒纳米探针开发中的探索
- 批准号:22374081
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
基于微弱磁信号增强检测的海域目标融合式探测方法
- 批准号:62371472
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
微弱信号下的鲁棒非线性自适应滤波器算法及高精度定位研究
- 批准号:62371319
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
单光子器件微弱信号探测机理与静电抑制技术研究
- 批准号:62304007
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向微弱紫外信号探测的GaN基探测器与电路前级晶体管片上集成基础物理及关键技术研究
- 批准号:62374084
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
深層学習は関連タスクを学べるか:関連タスク学習能力の獲得とバイオ画像への応用
深度学习能否学习相关任务:相关任务学习能力的获取及其在生物图像中的应用
- 批准号:
22KJ2396 - 财政年份:2023
- 资助金额:
$ 50.05万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Algebraic Structures in Weakly Supervised Disentangled Representation Learning
弱监督解缠表示学习中的代数结构
- 批准号:
22KJ0880 - 财政年份:2023
- 资助金额:
$ 50.05万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of deepometry for the supervised and weakly supervised learning of imaging data
用于成像数据监督和弱监督学习的深度测量的发展
- 批准号:
2748735 - 财政年份:2022
- 资助金额:
$ 50.05万 - 项目类别:
Studentship
Foundations of Unsupervised and Weakly Supervised Learning
无监督和弱监督学习的基础
- 批准号:
RGPIN-2019-06018 - 财政年份:2022
- 资助金额:
$ 50.05万 - 项目类别:
Discovery Grants Program - Individual
Deep Weakly-Supervised Neural Networks for Cross-Domain Video Recognition and Localization
用于跨域视频识别和定位的深度弱监督神经网络
- 批准号:
DGDND-2022-05397 - 财政年份:2022
- 资助金额:
$ 50.05万 - 项目类别:
DND/NSERC Discovery Grant Supplement