Lower bounds for binary quadratic minimization problems using nonconvex separable underestimators
使用非凸可分离低估量的二元二次最小化问题的下界
基本信息
- 批准号:231686800
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2012
- 资助国家:德国
- 起止时间:2011-12-31 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project is concerned with the solution of quadratic variants of classical combinatorial optimization problems. Such problems are generally NP-hard, even if linear optimization over the same feasible set is possible efficiently. As an example, the quadratic spanning tree problem is very hard to solve in theory and in practice, while the linear counterpart of this problem can be solved by well-known and very fast algorithms such as Kruskal's algorithm.So far, we developped a new approach for the exact solution of quadratic combinatorial optimization problems that is applicable in particular when the underlying linear problem is tractable or can at least be approximated well. No assumptions are made concerning the given quadratic objective function, in particular, it is not supposed to be convex or sparse.The idea of our approach is to underestimate the objective function (in case of a minimization problem) by a separable quadratic function. By the binarity of the given variables, the latter is equivalent to a linear objective function. The optimal value of the resulting linear optimization problem thus yields a lower bound for the original quadratic problem. By embedding this approach into a branch-and-bound scheme, we obtain an exact algorithm for the original problem. An important advantage of this approach is that the resulting linear problems can be solved by an arbitrary algorithm, in particular, combinatorial algorithms can be used. The solver for the linear optimization problem is considered a black box in our approach.In the further course of the project, we will focus on the improvement of these methods in terms of the resulting running times. We will develop a problem-specific solver for the semidefinite programs needed to compute optimal underestimators. Moreover, we will investigate the question how the requirement of separability can be relaxed for specific combinatorial problems in order to obtain tighter bounds. The ultimate objective of our project is an algorithmic approach that, on one hand, can be applied directly for a wide class of quadratic combinatorial optimization problems by just adding the corresponding black box. On the other hand, exploiting the structure of specific combinatorial problems when computing underestimators, we aim at even faster solution for particular problems.
该项目与经典组合优化问题的二次变体有关。即使对同一可行集合的线性优化是有效的,这些问题通常是NP-固定的。例如,在理论上和实践中很难解决二次跨越树问题,而这个问题的线性对应物可以通过诸如Kruskal的算法等众所周知且非常快的算法来解决。到目前为止,我们开发了一种新的方法,即至少在近似于限制问题的问题上,尤其是Quadratic组合优化问题的确切解决方案。没有关于给定的二次目标函数的假设,尤其是不应该是凸或稀疏的。通过给定变量的二进制,后者等同于线性目标函数。因此,所得线性优化问题的最佳值为原始二次问题产生了下限。通过将这种方法嵌入分支和结合方案中,我们获得了原始问题的精确算法。这种方法的一个重要优点是,可以通过任意算法来解决所得的线性问题,尤其是可以使用组合算法。线性优化问题的求解器被认为是我们方法中的黑匣子。在项目的进一步过程中,我们将重点关注这些方法的改进。我们将为计算最佳低估所需的半决赛程序开发特定问题的求解器。此外,我们将调查一个问题,如何放宽特定组合问题的可分离性要求,以获得更紧密的范围。我们项目的最终目标是一种算法方法,一方面,可以通过添加相应的黑匣子直接应用于宽类二次组合优化问题。另一方面,在计算低估器时利用特定组合问题的结构,我们旨在更快地解决特定问题的解决方案。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quadratic Combinatorial Optimization Using Separable Underestimators
- DOI:10.1287/ijoc.2017.0789
- 发表时间:2018-06-01
- 期刊:
- 影响因子:2.1
- 作者:Buchheim, Christoph;Traversi, Emiliano
- 通讯作者:Traversi, Emiliano
Separable Non-convex Underestimators for Binary Quadratic Programming
- DOI:10.1007/978-3-642-38527-8_22
- 发表时间:2013-06
- 期刊:
- 影响因子:2.7
- 作者:C. Buchheim;Emiliano Traversi
- 通讯作者:C. Buchheim;Emiliano Traversi
SDP-based branch-and-bound for non-convex quadratic integer optimization
基于 SDP 的分支定界非凸二次整数优化
- DOI:10.1007/s10898-018-0717-z
- 发表时间:2019
- 期刊:
- 影响因子:1.8
- 作者:Buchheim;Christoph;Montenegro;Maribel;Wiegele;Angelika
- 通讯作者:Angelika
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Christoph Buchheim其他文献
Professor Dr. Christoph Buchheim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Christoph Buchheim', 18)}}的其他基金
Strategic planning of seaport hinterland networks with focus on LCL shipment consoldiation in gateways
以口岸拼箱集运为重点的海港腹地网络战略规划
- 批准号:
421917839 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants (Transfer Project)
Exact and heuristic algorithms for uncertain and time-dependent hub location problems based on quadratic optimization
基于二次优化的不确定且与时间相关的枢纽位置问题的精确启发式算法
- 批准号:
201197672 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Grants
Two-stage optimization for planning logistics service networks
物流服务网络规划的两阶段优化
- 批准号:
504583220 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Convex relaxations of PDE-constrained optimization problems with combinatorial switching constraints
具有组合切换约束的偏微分方程约束优化问题的凸松弛
- 批准号:
468720830 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
西北不同生态系统下气溶胶对边界层辐射平衡的影响及模拟研究
- 批准号:42375085
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
菲律宾以东海域次表层涡与西边界流相互作用的能量学研究
- 批准号:42306004
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
脑边界相关巨噬细胞介导肠道菌群失调致POCD的免疫代谢机制研究
- 批准号:82371208
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
EAST高极向比压运行模式下芯部与边界兼容机制的数值模拟研究
- 批准号:12375228
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
上行下效还是见贤思齐?团队间互助的形成机制与边界条件
- 批准号:72302096
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Lower Bounds for Shallow Circuits
职业生涯:浅层电路的下限
- 批准号:
2338730 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Complexity Lower Bounds from Expansion
扩展带来的复杂性下限
- 批准号:
23K16837 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Non-parametric estimation under covariate shift: From fundamental bounds to efficient algorithms
协变量平移下的非参数估计:从基本界限到高效算法
- 批准号:
2311072 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Towards new classes of conic optimization problems
迈向新类别的二次曲线优化问题
- 批准号:
23K16844 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Branching Program Lower Bounds
分支程序下界
- 批准号:
RGPIN-2019-06288 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual