RII Track-4: Big Data and Massive Computation Approaches to Non-Equilibrium Dynamics of Strongly Correlated Materials
RII Track-4:强相关材料非平衡动力学的大数据和大规模计算方法
基本信息
- 批准号:1738698
- 负责人:
- 金额:$ 22.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-15 至 2022-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-technical DescriptionIn some materials, the motion of elections through the material structure can be highly correlated, such that the electrons behave as cars move in heavy traffic; they cannot maneuver freely and their motions are strongly influenced by others. Materials that exhibit electron correlations also exhibit intriguing properties, such as metal-insulator transitions and unconventional superconductivity. However, whether electron correlation is the sole cause of these observed effects has perplexed scientists for decades. Overcoming this gap in knowledge could open up revolutionary opportunities for novel transistor and ultrafast device applications. In this project, the PI will use the supercomputing capabilities at Oak Ridge National Laboratory to tackle this challenging problem. Advanced simulations will be performed using tens of thousands of computing processors to model the behavior of electron correlation systems at the atomic scale. The research will generate more than 100 terabytes of data, requiring that Big Data techniques be employed to effectively process and analyze the huge data volume. The project includes efforts to broaden participation in the next-generation scientific computing workforce. The research topics address several of the 10 Big Ideas for Future NSF Investments and the Grand Challenges in Basic Energy Sciences, thereby also having potential impacts on U.S. science leadership and an energy-sustainable future.Technical DescriptionThe project's focus is on modeling quantum many-body phenomena driven away from equilibrium, with the goal of understanding correlated electrons' non-equilibrium behaviors revealed by time-domain spectroscopies at ultra-short time scales. Matrix diagonalization over 100 billion basis states will be tackled by matrix-free and dataflow computing. Equilibrium and non-equilibrium wavefunction-based quantum impurity solvers also will be developed. Non-linear time series regression will be further implemented to alleviate the computational cost for time-evolution calculations. The resulting codes will be employed to simulate ultrafast photon-based spectroscopies on vanadium dioxide (VO2), using effective single-band Hubbard model and multi-orbital Hamiltonian from Wannier projection. The role of structure transition will be addressed by restricted phonon calculations. These simulations could significantly advance the understanding of non-equilibrium phenomena and photo-induced phase transitions in VO2 and other strongly correlated transition-metal oxides. Open-source softwares also will be made freely available to the public for parallel cloud computing to further benefit the scientific community for numerical studies of non-equilibrium many-body problems.
非技术描述在某些材料中,通过材料结构的选举运动可以高度相关,因此当汽车在繁忙的交通中移动时,电子的行为;他们不能自由操纵,他们的动作受到他人的强烈影响。表现出电子相关性的材料也表现出有趣的特性,例如金属 - 绝缘体过渡和非常规的超导性。 但是,电子相关是否是这些观察到的效应的唯一原因,几十年来使科学家困惑。克服这一知识差距可以为新型晶体管和超快设备应用打开革命性的机会。在该项目中,PI将使用Oak Ridge国家实验室的超级计算功能来解决这个具有挑战性的问题。将使用数以万计的计算处理器进行高级模拟,以模拟原子量表电子相关系统的行为。该研究将产生100多个数据的数据,要求采用大数据技术来有效地处理和分析庞大的数据量。该项目包括扩大参与下一代科学计算员工队伍的努力。 The research topics address several of the 10 Big Ideas for Future NSF Investments and the Grand Challenges in Basic Energy Sciences, thereby also having potential impacts on U.S. science leadership and an energy-sustainable future.Technical DescriptionThe project's focus is on modeling quantum many-body phenomena driven away from equilibrium, with the goal of understanding correlated electrons' non-equilibrium behaviors revealed by time-domain spectroscopies at ultra-short time秤。超过1000亿个基态矩阵对角线将通过无基质和数据流计算来解决。还将开发基于平衡和非平衡波函数的量子杂质求解器。非线性时间序列回归将进一步实施,以减轻时间进化计算的计算成本。最终的代码将使用有效的单频段哈伯德模型和来自Wannier投影的有效的单频段哈伯德模型和多轨汉密尔顿,模拟了二氧化钒(VO2)上的超快光子光谱。结构过渡的作用将通过限制的声子计算来解决。这些模拟可以显着提高对VO2和其他密切相关的过渡金属氧化物中非平衡现象的理解和光诱导的相变。还将向公众免费提供开源软件,以进行平行云计算,以进一步使科学界有利于非平衡多体问题的数值研究。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fluctuating Nature of Light-Enhanced d -Wave Superconductivity: A Time-Dependent Variational Non-Gaussian Exact Diagonalization Study
- DOI:10.1103/physrevx.11.041028
- 发表时间:2021-01
- 期刊:
- 影响因子:12.5
- 作者:Yao Wang;T. Shi;Cheng-Chien Chen
- 通讯作者:Yao Wang;T. Shi;Cheng-Chien Chen
Theory of time-resolved Raman scattering in correlated systems: Ultrafast engineering of spin dynamics and detection of thermalization
相关系统中的时间分辨拉曼散射理论:自旋动力学的超快工程和热化检测
- DOI:10.1103/physrevb.98.245106
- 发表时间:2018
- 期刊:
- 影响因子:1.7
- 作者:Wang, Yao;Devereaux, Thomas P.;Chen, Cheng-Chien
- 通讯作者:Chen, Cheng-Chien
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cheng-Chien Chen其他文献
Maintenance of stable light emission in high power LEDs
- DOI:
10.1016/j.microrel.2012.02.002 - 发表时间:
2012-05-01 - 期刊:
- 影响因子:
- 作者:
Hung-Yu Chou;Cheng-Chien Chen;Tsung-Hsun Yang - 通讯作者:
Tsung-Hsun Yang
Cheng-Chien Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cheng-Chien Chen', 18)}}的其他基金
CAREER: Correlated Superconductors under Extreme Conditions
职业:极端条件下的相关超导体
- 批准号:
2142801 - 财政年份:2022
- 资助金额:
$ 22.21万 - 项目类别:
Continuing Grant
Travel Grant for NSF Frontera LRAC Award: Technical Coordination with TACC and Attendance to a PI Meeting
NSF Frontera LRAC 奖旅费资助:与 TACC 进行技术协调并参加 PI 会议
- 批准号:
2031563 - 财政年份:2020
- 资助金额:
$ 22.21万 - 项目类别:
Standard Grant
相似国自然基金
石羊河上游径流水源追踪量化的模拟研究
- 批准号:42301153
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向复杂场景的说话人追踪关键技术研究
- 批准号:62306029
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
单波段机载LiDAR测深的瞬时海面确定及光线追踪
- 批准号:42304051
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
用户兴趣迁移现象下基于图神经网络的舆情追踪技术研究
- 批准号:62302199
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于量子电压动态追踪补偿的精密磁通测量方法研究
- 批准号:52307021
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
RII Track-2 FEC: Precise Regional Forecasting via Intelligent and Rapid Harnessing of National Scale Hydrometeorological Big Data
RII Track-2 FEC:通过智能快速利用国家规模水文气象大数据进行精确区域预报
- 批准号:
2019511 - 财政年份:2020
- 资助金额:
$ 22.21万 - 项目类别:
Cooperative Agreement
RII Track-2 FEC: Leveraging Big Data to Improve Prediction of Tick-Borne Disease Patterns and Dynamics
RII Track-2 FEC:利用大数据改进对蜱传疾病模式和动态的预测
- 批准号:
2019609 - 财政年份:2020
- 资助金额:
$ 22.21万 - 项目类别:
Cooperative Agreement
RII Track-2 FEC: IGM--A Framework for Harnessing Big Hydrological Datasets for Integrated Groundwater Management
RII Track-2 FEC:IGM——利用大水文数据集进行地下水综合管理的框架
- 批准号:
2019561 - 财政年份:2020
- 资助金额:
$ 22.21万 - 项目类别:
Cooperative Agreement
RII Track-2 FEC: Consortium for Plant Invasion Genomics (CPING): Combining Big Data and Plant Collections to Understand Invasiveness
RII Track-2 FEC:植物入侵基因组学联盟 (CPING):结合大数据和植物收集来了解入侵性
- 批准号:
1920858 - 财政年份:2019
- 资助金额:
$ 22.21万 - 项目类别:
Cooperative Agreement
RII Track-2 FEC: Marshalling Diverse Big Data Streams to Understand Risk of Tick-Borne Diseases in the Great Plains
RII Track-2 FEC:整理不同的大数据流以了解大平原蜱传疾病的风险
- 批准号:
1920946 - 财政年份:2019
- 资助金额:
$ 22.21万 - 项目类别:
Cooperative Agreement