CCSS: Collaborative Research: Ubiquitous Sensing for VR/AR Immersive Communication: A Machine Learning Perspective
CCSS:协作研究:VR/AR 沉浸式通信的无处不在的感知:机器学习的视角
基本信息
- 批准号:1711592
- 负责人:
- 金额:$ 22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Virtual and augmented reality systems comprise multi-view camera sensors that capture a scene from multiple perspectives. The captured data is then used to construct an immersive representation of the scene on the user's head mounted display. Such systems are poised to enable and enhance numerous important applications, e.g., inspection of large-scale infrastructure, archival of historical sites, search and rescue, disaster response, military reconnaissance, natural resource management, and immersive telepresence. However, due to its emerging nature, virtual/augmented reality immersive communication is presently limited to gaming or entertainment demonstrations featuring off-line captured/computer-generated content, studio-type settings, and high-end workstations to sustain its high data/computing workload. Moreover, there is little understanding of the fundamental trade-offs between the required signal acquisition density and sensor locations across space and time, the dynamics of the captured scene (motion, geometry, and textures), the available network and system resources, and the delivered immersion quality. This renders existing solutions impractical for deployment on bandwidth and energy constrained remote sensors. The project addresses these challenges via rigorous analysis and concerted algorithmic and application advances at the intersection of multi-view space-time sensing and signal representation, delay-sensitive communication, and machine learning. Education and outreach activities will immerse students in the exciting areas of visual sensing, wireless communications, and machine learning, and will engage underrepresented students spanning K-12 through undergraduate levels.The objective of this project is to efficiently capture a remote environment using multiple camera sensors with the highest possible reconstruction quality under limited sampling and communication resources. This is achieved through four interrelated research tasks: (i) analysis of optimal space-time sampling policies that determine the sensors' locations and sampling rates to minimize the remote scene's reconstruction error; (ii) design of optimal signal representation methods that embed the sampled data jointly across space and time according to the allocated sampling rates; (iii) design of online learning sampling policies based on spectral graph theory that take sampling actions while exploring new sensor locations in the absence of a priori scene viewpoint signal knowledge; and (vi) design of computationally efficient self-organizing reinforcement learning methods that allow the wireless sensors to compute optimal transmission scheduling policies that meet the low-latency requirements of the overlaying virtual/augmented reality application while conserving their available energy. Integration, experimentation, and prototyping activities will be conducted to asses and validate the research advances in real-world settings. These technical advances will enable diverse applications of transformative impact.
虚拟和增强现实系统包含多视图相机传感器,可以从多个角度捕获场景。然后使用捕获的数据在用户的头戴式显示器上构建场景的沉浸式表示。此类系统有望实现和增强许多重要的应用,例如大型基础设施的检查、历史遗址的归档、搜索和救援、灾难响应、军事侦察、自然资源管理和沉浸式远程呈现。然而,由于其新兴性质,虚拟/增强现实沉浸式通信目前仅限于以离线捕获/计算机生成内容、工作室类型设置和高端工作站为特色的游戏或娱乐演示,以维持其高数据/计算能力工作量。此外,人们对所需信号采集密度和跨空间和时间的传感器位置、捕获场景的动态(运动、几何和纹理)、可用网络和系统资源以及提供沉浸式品质。这使得现有的解决方案无法部署在带宽和能量受限的远程传感器上。该项目通过在多视图时空传感和信号表示、延迟敏感通信和机器学习的交叉点上进行严格的分析以及协调一致的算法和应用进步来应对这些挑战。教育和推广活动将使学生沉浸在视觉传感、无线通信和机器学习等令人兴奋的领域,并将吸引从 K-12 到本科阶段的代表性不足的学生。该项目的目标是使用多个摄像头有效捕捉远程环境在有限的采样和通信资源下具有最高可能重建质量的传感器。这是通过四个相互关联的研究任务实现的:(i)分析最佳时空采样策略,确定传感器的位置和采样率,以最大限度地减少远程场景的重建误差; (ii) 设计最佳信号表示方法,根据分配的采样率跨空间和时间联合嵌入采样数据; (iii) 基于谱图理论设计在线学习采样策略,在缺乏先验场景视点信号知识的情况下,在探索新传感器位置的同时采取采样动作; (vi)设计计算高效的自组织强化学习方法,允许无线传感器计算最佳传输调度策略,满足覆盖虚拟/增强现实应用的低延迟要求,同时节省可用能量。将进行集成、实验和原型设计活动,以评估和验证现实环境中的研究进展。这些技术进步将使变革性影响的多样化应用成为可能。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
UAV-IoT for Next Generation Virtual Reality
用于下一代虚拟现实的无人机物联网
- DOI:10.1109/tip.2019.2921869
- 发表时间:2019-12
- 期刊:
- 影响因子:10.6
- 作者:Chakareski; Jacob
- 通讯作者:Jacob
An Energy Efficient Framework for UAV-Assisted Millimeter Wave 5G Heterogeneous Cellular Networks
无人机辅助毫米波 5G 异构蜂窝网络的节能框架
- DOI:10.1109/tgcn.2019.2892141
- 发表时间:2019-03
- 期刊:
- 影响因子:4.8
- 作者:Chakareski, Jacob;Naqvi, Syed;Mastronarde, Nicholas;Xu, Jie;Afghah, Fatemeh;Razi, Abolfazl
- 通讯作者:Razi, Abolfazl
Energy Efficiency Analysis of UAV-Assisted mmWave HetNets
无人机辅助毫米波异构网络的能效分析
- DOI:10.1109/icc.2018.8422870
- 发表时间:2018-07-27
- 期刊:
- 影响因子:0
- 作者:Syed Naqvi;Jacob Chakareski;Nicholas Mastronarde;J. Xu;F. Afghah;Abolfazl Razi
- 通讯作者:Abolfazl Razi
Displacement Error Analysis of 6-DoF Virtual Reality
六自由度虚拟现实位移误差分析
- DOI:10.1145/3349801.3349812
- 发表时间:2019-09
- 期刊:
- 影响因子:0
- 作者:Aksu, Ridvan;Chakareski, Jacob;Velisavljevic, Vladan
- 通讯作者:Velisavljevic, Vladan
Structural Properties of Optimal Transmission Policies for Delay-Sensitive Energy Harvesting Wireless Sensors
延迟敏感能量收集无线传感器最优传输策略的结构特性
- DOI:10.1109/icc.2018.8422092
- 发表时间:2018-05
- 期刊:
- 影响因子:0
- 作者:Sharma, Nikhilesh;Mastronarde, Nicholas;Chakareski, Jacob
- 通讯作者:Chakareski, Jacob
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jacob Chakareski其他文献
Modeling of distortion caused by Markov-model burst packet losses in video transmission
视频传输中马尔可夫模型突发丢包引起的失真建模
- DOI:
10.1109/mmsp.2009.5293345 - 发表时间:
2009-10-23 - 期刊:
- 影响因子:0
- 作者:
Zhicheng Li;Jacob Chakareski;Xiaodun Niu;Yongjun Zhang;W. Gu - 通讯作者:
W. Gu
Distortion chains for predicting the video distortion for general packet loss patterns
用于预测一般丢包模式的视频失真的失真链
- DOI:
10.1109/icassp.2004.1327282 - 发表时间:
2004-05-17 - 期刊:
- 影响因子:0
- 作者:
Jacob Chakareski;J. Apostolopoulos;Wai;S. Wee;B. Girod - 通讯作者:
B. Girod
Multi-stream partitioning and parity rate allocation for scalable IPTV delivery
用于可扩展 IPTV 传输的多流分区和奇偶校验率分配
- DOI:
10.1109/icip.2010.5650843 - 发表时间:
2010-12-03 - 期刊:
- 影响因子:0
- 作者:
Jacob Chakareski;P. Frossard - 通讯作者:
P. Frossard
Full UHD 360-Degree Video Dataset and Modeling of Rate-Distortion Characteristics and Head Movement Navigation
全超高清 360 度视频数据集以及率失真特性和头部运动导航建模
- DOI:
10.1145/3458305.3478447 - 发表时间:
2021-06-24 - 期刊:
- 影响因子:0
- 作者:
Jacob Chakareski;Ridvan Aksu;Viswanathan Swaminathan;M. Zink - 通讯作者:
M. Zink
Multiple-Cache Pairing for Fine-Grained Scalable Video Caching and Networking
用于细粒度可扩展视频缓存和网络的多缓存配对
- DOI:
10.1145/3341188.3341196 - 发表时间:
2019-08-07 - 期刊:
- 影响因子:0
- 作者:
Qiushi Gong;J. Woods;K. Kar;Jacob Chakareski - 通讯作者:
Jacob Chakareski
Jacob Chakareski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jacob Chakareski', 18)}}的其他基金
Collaborative Research: CNS Core: Medium: miVirtualSeat: Semantics-aware Content Distribution for Immersive Meeting Environments
协作研究:CNS 核心:媒介:miVirtualSeat:用于沉浸式会议环境的语义感知内容分发
- 批准号:
2106150 - 财政年份:2021
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
ICE-T: RC: Millimeter Wave Communications and Edge Computing for Next Generation Tetherless Mobile Virtual Reality
ICE-T:RC:下一代无线移动虚拟现实的毫米波通信和边缘计算
- 批准号:
2032033 - 财政年份:2020
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
CCSS: Collaborative Research: Ubiquitous Sensing for VR/AR Immersive Communication: A Machine Learning Perspective
CCSS:协作研究:VR/AR 沉浸式通信的无处不在的感知:机器学习的视角
- 批准号:
2032387 - 财政年份:2020
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
CIF: Small: Mobile Immersive Communication: View Sampling and Rate-Distortion Limits
CIF:小型:移动沉浸式通信:查看采样和率失真限制
- 批准号:
2031881 - 财政年份:2020
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
The Future VR/AR Network -- Towards Virtual Human/Object Teleportation: NSF Workshop on Networked Virtual and Augmented Reality Communications
未来的 VR/AR 网络——迈向虚拟人/物隐形传态:NSF 网络虚拟和增强现实通信研讨会
- 批准号:
2040088 - 财政年份:2020
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
ICE-T: RC: Millimeter Wave Communications and Edge Computing for Next Generation Tetherless Mobile Virtual Reality
ICE-T:RC:下一代无线移动虚拟现实的毫米波通信和边缘计算
- 批准号:
1836909 - 财政年份:2018
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
The Future VR/AR Network -- Towards Virtual Human/Object Teleportation: NSF Workshop on Networked Virtual and Augmented Reality Communications
未来的 VR/AR 网络——迈向虚拟人/物隐形传态:NSF 网络虚拟和增强现实通信研讨会
- 批准号:
1821875 - 财政年份:2018
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
CIF: Small: Mobile Immersive Communication: View Sampling and Rate-Distortion Limits
CIF:小型:移动沉浸式通信:查看采样和率失真限制
- 批准号:
1528030 - 财政年份:2015
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
相似国自然基金
基于交易双方异质性的工程项目组织间协作动态耦合研究
- 批准号:72301024
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
- 批准号:
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
面向协作感知车联网的信息分发时效性保证关键技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自主性边界的人机协作-对抗混合智能控制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: ECCS-CCSS Core: Resonant-Beam based Optical-Wireless Communication
合作研究:ECCS-CCSS核心:基于谐振光束的光无线通信
- 批准号:
2332173 - 财政年份:2024
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Collaborative Research: ECCS-CCSS Core: Resonant-Beam based Optical-Wireless Communication
合作研究:ECCS-CCSS核心:基于谐振光束的光无线通信
- 批准号:
2332172 - 财政年份:2024
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Collaborative Research: CCSS: Towards Energy-Efficient Millimeter Wave Wireless Networks: A Unified Systems and Circuits Framework
合作研究:CCSS:迈向节能毫米波无线网络:统一系统和电路框架
- 批准号:
2242700 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Collaborative Research: CCSS: Hierarchical Federated Learning over Highly-Dense and Overlapping NextG Wireless Deployments: Orchestrating Resources for Performance
协作研究:CCSS:高密度和重叠的 NextG 无线部署的分层联合学习:编排资源以提高性能
- 批准号:
2319780 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Collaborative Research: CCSS: Continuous Facial Sensing and 3D Reconstruction via Single-ear Wearable Biosensors
合作研究:CCSS:通过单耳可穿戴生物传感器进行连续面部传感和 3D 重建
- 批准号:
2401415 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Standard Grant