Geometry of Curves and Surfaces

曲线和曲面的几何

基本信息

  • 批准号:
    1711400
  • 负责人:
  • 金额:
    $ 24.54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-06-01 至 2021-05-31
  • 项目状态:
    已结题

项目摘要

Curves and surfaces are to geometry what numbers are to algebra. They form the basic ingredients of our visual perception and inspire the development of far reaching mathematical tools. Yet despite centuries of study, and an abundance of potential applications, there are still many fundamental open problems in this area which are strikingly intuitive and elementary to state. Studying these problems may stimulate useful developments in mathematics, or lead to wider applications in science and technology. For instance, the Principal Investigator's work on rigidity problem for surfaces may have applications for stability of complicated domes in modern architecture, or various physical frameworks. Further, various techniques which the Principal Investigator is proposing to develop could be useful in computer aided design, mathematical physics, and the emerging field of discrete differential geometry. Finally, these problems are ideal for introducing the general public to the exciting world of modern day mathematics, and arousing the interest of beginning students in Geometry.The PI's research on curves and surfaces, and more generally Riemannian submanifolds, spans a wide range of topics including isometric embeddings, h-principle theory, isoperimetric problems, geometric knot theory, polyhedral approximations, and connections with real algebraic geometry. Some recurring themes throughout these investigations are various notions of convexity or optimization, and the interaction between geometric and topological concepts, or local versus global properties of submanifolds. More specifically, a typical problem is how restrictions on curvature, intrinsic metric, or various boundary conditions, influence the global shape of a curve or a hypersurface, or even allow an embedding of that object in a Euclidean space of low codimension. A fundamental problem in this area is that of isometric rigidity of surfaces: can one continuously deform a smooth closed surface in Euclidean space without changing its intrinsic metric? The PI also considers a number of related problems involving the self-linking number or vertices of closed curves, spherical images of closed surfaces, and various deformations of submanifolds which preserve the sign or magnitude of the curvature. Other projects include unfoldings of convex polytopes, and the study of the cut locus or medial axis of contractible regions in Euclidean space.
曲线和曲面对于几何学来说就像数字对于代数一样。它们构成了我们视觉感知的基本成分,并激发了影响深远的数学工具的发展。然而,尽管经过几个世纪的研究和大量的潜在应用,该领域仍然存在许多基本的开放问题,这些问题非常直观且易于陈述。研究这些问题可能会刺激数学的有益发展,或者导致科学和技术的更广泛应用。例如,首席研究员在表面刚性问题方面的工作可能适用于现代建筑中复杂圆顶或各种物理框架的稳定性。此外,首席研究员提议开发的各种技术可用于计算机辅助设计、数学物理和新兴的离散微分几何领域。 最后,这些问题非常适合向公众介绍令人兴奋的现代数学世界,并激发几何初学者的兴趣。PI 对曲线和曲面以及更一般的黎曼子流形的研究涵盖了广泛的主题包括等距嵌入、h 原理理论、等周问题、几何结理论、多面体近似以及与实代数几何的联系。这些研究中反复出现的一些主题是凸性或优化的各种概念,以及几何和拓扑概念之间的相互作用,或者子流形的局部与全局属性。更具体地说,一个典型的问题是对曲率、内在度量或各种边界条件的限制如何影响曲线或超曲面的全局形状,或者甚至允许将该对象嵌入到低余维的欧几里德空间中。该领域的一个基本问题是曲面的等距刚性:能否在不改变其内在度量的情况下使欧几里得空间中的平滑闭合曲面连续变形? PI 还考虑了许多相关问题,涉及闭合曲线的自链接数量或顶点、闭合曲面的球面图像以及保留曲率符号或大小的子流形的各种变形。其他项目包括凸多面体的展开,以及欧几里得空间中可收缩区域的切割轨迹或中轴的研究。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The length, width, and inradius of space curves
空间曲线的长度、宽度和半径
  • DOI:
  • 发表时间:
    2018-01
  • 期刊:
  • 影响因子:
    0.5
  • 作者:
    Ghomi; M
  • 通讯作者:
    M
Nonnegatively curved hypersurfaces with free boundary on a sphere
球体上具有自由边界的非负弯曲超曲面
D "urer's Unfolding Problem for Convex Polyhedra
丢勒的凸多面体展开问题
Pseudo-Edge Unfoldings of Convex Polyhedra
凸多面体的伪边展开
  • DOI:
    10.1007/s00454-019-00082-1
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Barvinok, Nicholas;Ghomi, Mohammad
  • 通讯作者:
    Ghomi, Mohammad
Boundary torsion and convex caps of locally convex surfaces
局部凸曲面的边界扭转和凸帽
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mohammad Ghomi其他文献

Mohammad Ghomi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mohammad Ghomi', 18)}}的其他基金

Geometry of Curves and Surfaces
曲线和曲面的几何
  • 批准号:
    2202337
  • 财政年份:
    2022
  • 资助金额:
    $ 24.54万
  • 项目类别:
    Standard Grant
Differential Geometry of Curves and Surfaces
曲线曲面的微分几何
  • 批准号:
    1308777
  • 财政年份:
    2013
  • 资助金额:
    $ 24.54万
  • 项目类别:
    Standard Grant
Differential Geometry and Topology of Riemannian Submanifolds
黎曼子流形的微分几何和拓扑
  • 批准号:
    0806305
  • 财政年份:
    2008
  • 资助金额:
    $ 24.54万
  • 项目类别:
    Standard Grant
Convexity Problems in Submanifold Geometry and Topology
子流形几何和拓扑中的凸性问题
  • 批准号:
    0336455
  • 财政年份:
    2003
  • 资助金额:
    $ 24.54万
  • 项目类别:
    Standard Grant
CAREER: Classical Problems in Differential Geometry, Topology, and Convexity
职业:微分几何、拓扑和凸性的经典问题
  • 批准号:
    0332333
  • 财政年份:
    2003
  • 资助金额:
    $ 24.54万
  • 项目类别:
    Standard Grant
Convexity Problems in Submanifold Geometry and Topology
子流形几何和拓扑中的凸性问题
  • 批准号:
    0204190
  • 财政年份:
    2002
  • 资助金额:
    $ 24.54万
  • 项目类别:
    Standard Grant

相似国自然基金

复杂轮廓曲线磨削加工稳定性及表面质量协同调控机理研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
湿式多片离合器摩擦元件表面冷却的流-固耦合传热特性研究
  • 批准号:
    51805289
  • 批准年份:
    2018
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
磁光材料的近场辐射传热增强及调控研究
  • 批准号:
    51806070
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
无大气天体偏振探测的若干问题研究
  • 批准号:
    11773023
  • 批准年份:
    2017
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
弯曲表面磁化等离子体薄涂层电磁散射的并置SIBC-NFDTD方法及散射特性研究
  • 批准号:
    61601205
  • 批准年份:
    2016
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Geometry of Curves and Surfaces
曲线和曲面的几何
  • 批准号:
    2202337
  • 财政年份:
    2022
  • 资助金额:
    $ 24.54万
  • 项目类别:
    Standard Grant
Curves, Surfaces, and 3-Manifolds: Geometry, Topology, and Dynamics in the Mapping Class Group and Beyond
曲线、曲面和 3 流形:映射类组及其他领域中的几何、拓扑和动力学
  • 批准号:
    2203912
  • 财政年份:
    2022
  • 资助金额:
    $ 24.54万
  • 项目类别:
    Standard Grant
Curves, Surfaces, and 3-Manifolds: Geometry, Topology, and Dynamics in the Mapping Class Group and Beyond
曲线、曲面和 3 流形:映射类组及其他领域中的几何、拓扑和动力学
  • 批准号:
    2231286
  • 财政年份:
    2022
  • 资助金额:
    $ 24.54万
  • 项目类别:
    Standard Grant
Generation of Curves and Surfaces based on the Properties of Differential Geometry
基于微分几何性质的曲线曲面生成
  • 批准号:
    17K00172
  • 财政年份:
    2017
  • 资助金额:
    $ 24.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Problems in Euclidean harmonic analysis related to the geometry of curves and surfaces
与曲线和曲面几何相关的欧几里得调和分析问题
  • 批准号:
    230032422
  • 财政年份:
    2013
  • 资助金额:
    $ 24.54万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了