Collaborative Research: Nanoprobes for mapping the spatiotemporal evolution of ultrafast optical vector near field

合作研究:用于绘制超快光矢量近场时空演化图的纳米探针

基本信息

项目摘要

Advances in optical nanotechnology have enabled a wide range of applications, such as increased sensitivity for the detection of just a few molecules with plasmonic nanoparticles. To quantify the performance of optical devices and develop new capabilities, it is essential to measure the behaviors of ultrafast optical fields with nanoscale spatial resolution and femtosecond scale temporal resolution. To address the challenge, this program engenders a novel type of nanoprobe, integrated with a custom near-field scanning microscope system, for comprehensive characterization of the ultrafast optical near field. The research program will enhance understanding by combining the expertise of three researchers in different research areas at three universities. The exciting areas in ultrafast optics and nano-optics will provide excellent education opportunities for graduate and undergraduate as well as K-12 students in the lab, in the classroom, and through outreach activities. Graduate and undergraduate students will be trained through the research activities such as nanoprobe fabrication, application of near-field scanning optical microscope system, optical measurements, and numerical simulation and retrieval in a collaborative setting across the three universities. Results will be incorporated into courses. In keeping with prior projects of the researchers, women and underrepresented groups will be encouraged and expected to participate in the program.The goal of this program is to develop a nanoprobe based characterization method that can map the spatiotemporal evolution of ultrafast optical vector near field in nanometer-femtosecond scale. A nanoprobe, which consists of a second order nonlinear nanocrystal perched on a nanowire or a near-field scanning optical microscope (NSOM) probe, will be integrated with a custom-built NSOM system to achieve sample-probe distance control and nanoscale spatial resolution. The nonlinear response of the nanocrystal (i.e., second harmonic generation -SHG) can be exploited to characterize both the amplitude and the phase profiles of the local ultrafast field as well as the spatiotemporal evolution through the collinear SHG frequency resolved optical gating (FROG) holography. Due to the presence of a strong "local oscillator" and the reliance on homodyne detection, FROG holography will also improve the measurement sensitivity. Finally, polarized SHG from the nanoprobe is utilized to probe the polarization of the local ultrafast optical field. Since the second harmonic signal has a distinct wavelength, it is insensitive to any background noise generated by the reflection or scattering of the fundamental field. Further, the second order nonlinear tensor is determined by the material properties such as the crystal structure and is largely independent of the particle morphology, leading to a more controllable nanoprobe sensor. Knowledge of the local spatiotemporal fields enhances the capability to quantify spectroscopic signals from plasmonic structures, a long-standing challenge in nanospectroscopy.
光学纳米技术的进步已经实现了广泛的应用,例如通过等离子体纳米粒子提高了检测少数分子的灵敏度。为了量化光学器件的性能并开发新功能,必须以纳米级空间分辨率和飞秒级时间分辨率测量超快光场的行为。为了应对这一挑战,该计划产生了一种新型纳米探针,与定制的近场扫描显微镜系统集成,用于超快光学近场的全面表征。该研究计划将通过结合三所大学不同研究领域的三名研究人员的专业知识来增进理解。超快光学和纳米光学领域的激动人心的领域将为研究生和本科生以及 K-12 学生在实验室、课堂和外展活动中提供极好的教育机会。研究生和本科生将在三所大学的合作环境中通过纳米探针制造、近场扫描光学显微镜系统应用、光学测量以及数值模拟和检索等研究活动接受培训。结果将纳入课程中。为了与研究人员之前的项目保持一致,将鼓励并期望女性和代表性不足的群体参与该计划。该计划的目标是开发一种基于纳米探针的表征方法,该方法可以绘制超快光矢量近场的时空演化图。纳米飞秒尺度。纳米探针由安装在纳米线上的二阶非线性纳米晶体或近场扫描光学显微镜 (NSOM) 探针组成,将与定制的 NSOM 系统集成,以实现样品探针距离控制和纳米级空间分辨率。纳米晶体的非线性响应(即二次谐波生成 -SHG)可用于表征局部超快场的振幅和相位分布,以及通过共线 SHG 频率分辨光门控 (FROG) 全息术的时空演化。由于存在强大的“本地振荡器”以及对零差检测的依赖,FROG全息术还将提高测量灵敏度。最后,利用纳米探针的偏振二次谐波来探测局部超快光场的偏振。由于二次谐波信号具有不同的波长,因此它对基波场的反射或散射产生的任何背景噪声不敏感。此外,二阶非线性张量由晶体结构等材料特性决定,并且很大程度上独立于颗粒形态,从而形成更可控的纳米探针传感器。对局部时空场的了解增强了量化等离子体结构的光谱信号的能力,这是纳米光谱学中长期存在的挑战。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yizheng Zhu其他文献

Observation of interference in a fiber taper interferometer with a subwavelength tip and its sensing applications.
具有亚波长尖端的光纤锥度干涉仪中的干涉观察及其传感应用。
  • DOI:
    10.1364/ol.34.002808
  • 发表时间:
    2009-09-15
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Yizheng Zhu;Xiaopei Chen;Anbo Wang
  • 通讯作者:
    Anbo Wang
Scanning fiber system for angle-resolved low coherence interferometry
用于角度分辨低相干干涉测量的扫描光纤系统
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yizheng Zhu;Neil G. Terry;M. Giacomelli;A. Wax
  • 通讯作者:
    A. Wax
Design and Verification of an Endoscopic Pre-cancer Detection System Based on Angle-Resolved Low Coherence Interferometry (a/LCI)
基于角度分辨低相干干涉测量 (a/LCI) 的内窥镜癌前病变检测系统的设计和验证
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yizheng Zhu;Neil G. Terry;W. Brown;A. Wax
  • 通讯作者:
    A. Wax
Optimizing Fourier-domain angle resolved low coherence interferometry for clinical use
优化傅里叶域角度解析低相干干涉测量以供临床使用
  • DOI:
    10.1117/12.808021
  • 发表时间:
    2009-02-12
  • 期刊:
  • 影响因子:
    15.1
  • 作者:
    Neil G. Terry;Yizheng Zhu;M. Rinehart;A. Wax
  • 通讯作者:
    A. Wax
All-Sapphire Miniature Optical Fiber Tip Sensor for High Temperature Measurement
用于高温测量的全蓝宝石微型光纤尖端传感器
  • DOI:
    10.1109/jlt.2019.2953156
  • 发表时间:
    2020-04-01
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Shuo Yang;Ziang Feng;X. Jia;G. Pickrell;W. Ng;Anbo Wang;Yizheng Zhu
  • 通讯作者:
    Yizheng Zhu

Yizheng Zhu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

利用纳米离子探针对三叠纪早期不同形态黄铁矿硫同位素的深入研究
  • 批准号:
    42302347
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
铀矿物纳米离子探针高空间分辨率U-Pb定年研究
  • 批准号:
    42373074
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
基于神经元活性的在体调控纳米探针在脑缺血再灌注损伤中的诊疗研究
  • 批准号:
    82360366
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
光/炎症共激活型荧光纳米探针的设计及其原位高时空分辨成像的研究
  • 批准号:
    32301161
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高亮上转换荧光纳米探针设计及铀近红外成像研究
  • 批准号:
    12305389
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Next-generation optical nanoprobes: From quantum biosensing to cellular monitoring
下一代光学纳米探针:从量子生物传感到细胞监测
  • 批准号:
    10622691
  • 财政年份:
    2023
  • 资助金额:
    $ 6万
  • 项目类别:
Collaborative Research: Nanoprobes for mapping the spatiotemporal evolution of ultrafast optical vector near field
合作研究:用于绘制超快光矢量近场时空演化图的纳米探针
  • 批准号:
    1710987
  • 财政年份:
    2017
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
New Photostable Nanoprobes for Real-time Imaging of Single Live Cells
用于单个活细胞实时成像的新型光稳定纳米探针
  • 批准号:
    9468747
  • 财政年份:
    2017
  • 资助金额:
    $ 6万
  • 项目类别:
A multimodal imaging system and targeted nanoprobes for image-guided treatment of breast cancer
用于乳腺癌图像引导治疗的多模态成像系统和靶向纳米探针
  • 批准号:
    9513881
  • 财政年份:
    2017
  • 资助金额:
    $ 6万
  • 项目类别:
Collaborative Research: Nanoprobes for mapping the spatiotemporal evolution of ultrafast optical vector near field
合作研究:用于绘制超快光矢量近场时空演化图的纳米探针
  • 批准号:
    1711099
  • 财政年份:
    2017
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了