Classification of Methods for Bayesian Inverse Problems Governed by Partial Differential Equations
偏微分方程治理贝叶斯反问题方法的分类
基本信息
- 批准号:1723211
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Inverse problems emerge in all areas of science, engineering, technology, and medicine. They provide a systematic and rigorous way to extract knowledge and insight from observational data. When this data corresponds to observations of natural or engineered systems that can be described by mathematical models, the properties and structure of the inverse problem depend on the properties of these models, which commonly involve partial differential equations (PDEs). It is crucial that efficient inverse problem solution methods exploit these properties. This is in particular the case when the inversion parameters are high (or infinite) dimensional, when the mathematical models are given by PDEs, and when one is interested in quantifying the uncertainty in the parameters, as is important in many applications.This project will systematically study properties and develop algorithms for three inverse problems that are representative of a wide class of Bayesian inverse problems governed by PDEs: (1) a parabolic inverse problem with spatially (and temporally) well-separated parameter and observation locations, (2) an elliptic Stokes flow problem for which a rich set of measurement data are available and the locations corresponding to parameters and observations are not well-separated, and (3) a hyperbolic problem with sparse point measurements. The PI will study these problems theoretically, develop and classify structure-exploiting methods to approximate their solutions, and implement these methods in an open-source software library. All three prototype problems have important and societally relevant real-world, large-scale analogues. Thus, any algorithmic or theoretical findings obtained for the three model problems will have immediate benefit for these grand challenge inverse problems.
科学,工程,技术和医学的所有领域都出现了反问题。它们提供了一种系统,严格的方式来从观察数据中提取知识和见解。当此数据对应于可以通过数学模型描述的天然或工程系统的观察,逆问题的属性和结构取决于这些模型的属性,这些模型通常涉及部分微分方程(PDES)。 至关重要的是,有效的逆问题解决方案方法利用这些特性。 This is in particular the case when the inversion parameters are high (or infinite) dimensional, when the mathematical models are given by PDEs, and when one is interested in quantifying the uncertainty in the parameters, as is important in many applications.This project will systematically study properties and develop algorithms for three inverse problems that are representative of a wide class of Bayesian inverse problems governed by PDEs: (1) a parabolic在空间(和时间上)分离良好的参数和观察位置的逆问题,(2)一个椭圆形的stokes流量问题,可以为其提供一组丰富的测量数据,并且与参数和观察相对应的位置并未得到很好的分离,以及(3)具有稀疏点测量的双重核问题问题。 PI理论上将研究这些问题,开发和分类结构开发方法以近似其解决方案,并在开源软件库中实现这些方法。 这三个原型问题都有重要且与社会相关的现实世界,大规模类似物。因此,对于三个模型问题,获得的任何算法或理论发现将对这些巨大的挑战反向问题具有直接的好处。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimal experimental design under irreducible uncertainty for linear inverse problems governed by PDEs
由偏微分方程控制的线性反问题的不可约不确定性下的最优实验设计
- DOI:10.1088/1361-6420/ab89c5
- 发表时间:2020
- 期刊:
- 影响因子:2.1
- 作者:Koval, Karina;Alexanderian, Alen;Stadler, Georg
- 通讯作者:Stadler, Georg
Advanced Newton Methods for Geodynamical Models of Stokes Flow With Viscoplastic Rheologies
具有粘塑性流变学的斯托克斯流地球动力学模型的高级牛顿方法
- DOI:10.1029/2020gc009059
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Rudi, Johann;Shih, Yu‐hsuan;Stadler, Georg
- 通讯作者:Stadler, Georg
A comparative study of structural similarity and regularization for joint inverse problems governed by PDEs
- DOI:10.1088/1361-6420/aaf129
- 发表时间:2018-08
- 期刊:
- 影响因子:2.1
- 作者:B. Crestel;G. Stadler;O. Ghattas
- 通讯作者:B. Crestel;G. Stadler;O. Ghattas
Sparse Solutions in Optimal Control of PDEs with Uncertain Parameters: The Linear Case
- DOI:10.1137/18m1181419
- 发表时间:2018-04
- 期刊:
- 影响因子:0
- 作者:Chen Li-;G. Stadler
- 通讯作者:Chen Li-;G. Stadler
Extreme event probability estimation using PDE-constrained optimization and large deviation theory, with application to tsunamis
- DOI:10.2140/camcos.2021.16.181
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:Shanyin Tong;E. Vanden-Eijnden;G. Stadler
- 通讯作者:Shanyin Tong;E. Vanden-Eijnden;G. Stadler
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Georg Stadler其他文献
Constraining Earth's nonlinear mantle viscosity using plate-boundary resolving global inversions.
使用板块边界解析全局反演来约束地球的非线性地幔粘度。
- DOI:
10.1073/pnas.2318706121 - 发表时间:
2024 - 期刊:
- 影响因子:11.1
- 作者:
Jiashun Hu;J. Rudi;M. Gurnis;Georg Stadler - 通讯作者:
Georg Stadler
Optimal quantum control of electron–phonon scatterings in artificial atoms
- DOI:
10.1016/j.physe.2005.05.029 - 发表时间:
2005-10-01 - 期刊:
- 影响因子:
- 作者:
Ulrich Hohenester;Georg Stadler - 通讯作者:
Georg Stadler
Sensitivity Analysis of the Information Gain in Infinite-Dimensional Bayesian Linear Inverse Problems
无限维贝叶斯线性逆问题信息增益的敏感性分析
- DOI:
10.1615/int.j.uncertaintyquantification.2024051416 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Abhijit Chowdhary;Shanyin Tong;Georg Stadler;A. Alexanderian - 通讯作者:
A. Alexanderian
Georg Stadler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Georg Stadler', 18)}}的其他基金
Collaborative Research: Forward and inverse models of global plate motions and plate interactions
合作研究:全球板块运动和板块相互作用的正向和逆向模型
- 批准号:
1646337 - 财政年份:2017
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
CDS&E: Collaborative Research: A Bayesian inference/prediction/control framework for optimal management of CO2 sequestration
CDS
- 批准号:
1507009 - 财政年份:2015
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
相似国自然基金
农田生物量遥感估算模型中输入不确定性的贝叶斯优化方法研究
- 批准号:42301386
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大规模检验中的经验贝叶斯方法
- 批准号:12371282
- 批准年份:2023
- 资助金额:44.00 万元
- 项目类别:面上项目
基于序贯贝叶斯分析的低事例率辐射成像中图像快速识别方法研究
- 批准号:12305346
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于高维组学数据的贝叶斯多水平stacking融合预测模型构建方法与应用研究
- 批准号:82373688
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
面向偏微分方程求解的贝叶斯神经算子理论及方法研究
- 批准号:62306176
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
A data science framework for transforming electronic health records into real-world evidence
将电子健康记录转化为现实世界证据的数据科学框架
- 批准号:
10664706 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Improving Age- and Cause-Specific Under-Five Mortality Rates (ACSU5MR) by Systematically Accounting Measurement Errors to Inform Child Survival Decision Making in Low Income Countries
通过系统地核算测量误差来改善特定年龄和特定原因的五岁以下死亡率 (ACSU5MR),为低收入国家的儿童生存决策提供信息
- 批准号:
10585388 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Challenging Classical Theories in Spatial Cognition: Contrasting Translator and Comparator Models of Human Retrosplenial Function
挑战空间认知中的经典理论:对比人类压后功能的翻译模型和比较模型
- 批准号:
10569490 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Integrative analysis of whole genomes and transcriptomes from multiple cell types in rare disease patients
罕见病患者多种细胞类型的全基因组和转录组的综合分析
- 批准号:
10587683 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Platform to support clinical variant interpretation through probabilistic assessment of functional evidence
通过功能证据的概率评估支持临床变异解释的平台
- 批准号:
10742133 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别: