STTR Phase I: Additive Manufacturing of Radio Frequency and Microwave Components from a Highly Conductive 3D Printing Filament

STTR 第一阶段:使用高导电 3D 打印丝材增材制造射频和微波组件

基本信息

  • 批准号:
    1721644
  • 负责人:
  • 金额:
    $ 22.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-01 至 2018-06-30
  • 项目状态:
    已结题

项目摘要

This STTR Phase I project will enable the rapid prototyping and manufacturing of radio frequency (RF) components with 3D printing, and thereby reduce component cost, weight, and turnaround time. The global RF components market is expected to reach $17.54 billion by 2022, but fabrication techniques for commercial RF components have seen little innovation. Conventional RF manufacturing techniques, such machining and photolithography, are accurate and reliable, but they are also expensive, time-consuming and produce unnecessary waste. 3D printing enables fast and accurate manufacturing of custom components, as well as the creation of extremely complex geometries at low-cost for improved component performance. 3D printing can also enable users to design components to fit the design space available, removing the necessity of designing technology around commercially available parts, a critical feature in space and weight-sensitive aerospace applications. However, the materials available to 3D printing are mostly limited to non-conducting polymers. By creating a highly conductive 3D printing material, and testing the properties of RF components made with this filament, this project will make it possible to rapidly prototype and produce custom RF components, thereby accelerating research and improving the competitiveness of RF component manufacturing in the U.S.This STTR proposal will create a highly conductive (2×10^5 S m-1) polymer filament that can be used with low-cost fused deposition modeling 3D printers to create a variety of high-value RF components. The filament will be engineered to print reliably, and retain its conductivity and mechanical integrity to temperatures of ~150 °C. To achieve these goals, the proposed work will determine the relationship between conductivity, the loading of conductive filler, the shape of the conductive filler, the filament mechanical properties, and the viscosity of the filament at printing temperatures. New methods will be developed to prevent oxidation of the conductive filler at elevated temperatures. A novel conductive filler will be developed to achieve these performance specifications at low cost. Concurrent with these material development efforts, novel RF components will be designed, simulated, and printed in order to build a comprehensive database with detailed designs and printing parameters for producing the RF components with a low failure rate. By the end of this project, users will be able to design, predict, and reliably print RF components with conductive filament on low-cost 3D printers.
这个STTR I期项目将使带有3D打印的射频(RF)组件的快速原型和制造,从而减少零件成本,重量和周转时间。到2022年,全球RF组件市场预计将达到175.4亿美元,但商业RF组件的制造技术几乎没有创新。常规的RF制造技术,例如加工和摄影,是准确且可靠的,但它们也很昂贵,耗时并产生不必要的废物。 3D打印可以快速,准确地制造自定义组件,并在低成本以提高组件性能的情况下创建极其复杂的几何形状。 3D打印还可以使用户能够设计组件以适合可用的设计空间,从而消除了围绕市售零件设计技术的必要属性,这是空间和对重量敏感的航空航天应用的关键功能。但是,3D打印的材料主要限于非导电聚合物。通过创建高电导性的3D打印材料,并测试用本文制成的RF组件的性能,该项目将有可能快速原型并生产自定义的RF组件,从而加速研究并提高RF组件制造在美国的竞争力,这将在美国的sttr中创建一个高度电导的模型(2×5 s M-1 M-1 M-1 M-1 M-1 M-1 M-1 M-1 M-1 M-1 M-1 M-1 M-1), 3D打印机可创建各种高价值RF组件。灯丝将经过设计,以可靠地打印,并保留其电导率和机械完整性对〜150°C的温度。为了实现这些目标,建议的工作将确定电导率,导电填充剂的加载,导电填充剂的形状,丝机械性能以及在打印温度下细丝的粘度之间的关系。将开发新方法,以防止在升高温度下氧化导电填充剂。将开发出一种新型的导电填充剂,以低成本达到这些性能规格。同时,将设计,模拟和打印新颖的RF组件,以构建具有详细的设计和打印参数的全面数据库,以生产具有较低故障率的RF组件。到该项目结束时,用户将能够在低成本3D打印机上设计,预测和可靠打印带有导电的RF组件。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
3D printing electronic components and circuits with conductive thermoplastic filament
  • DOI:
    10.1016/j.addma.2017.10.002
  • 发表时间:
    2017-12-01
  • 期刊:
  • 影响因子:
    11
  • 作者:
    Flowers, Patrick F.;Reyes, Christopher;Wiley, Benjamin J.
  • 通讯作者:
    Wiley, Benjamin J.
Computational microwave imaging using 3D printed conductive polymer frequency-diverse metasurface antennas
  • DOI:
    10.1049/iet-map.2017.0104
  • 发表时间:
    2017-04
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    O. Yurduseven;P. Flowers;Shengrong Ye;D. Marks;J. Gollub;T. Fromenteze;B. Wiley;David R. Smith
  • 通讯作者:
    O. Yurduseven;P. Flowers;Shengrong Ye;D. Marks;J. Gollub;T. Fromenteze;B. Wiley;David R. Smith
Integrated Flexible Conversion Circuit between a Flexible Photovoltaic and Supercapacitors for Powering Wearable Sensors
  • DOI:
    10.1149/2.0141808jes
  • 发表时间:
    2018-04
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    James O. Thostenson;Zhongxi Li;C. H. Kim;A. Ajnsztajn;C. Parker;Jie Liu;A. Peterchev;J. Glass;S. Goetz
  • 通讯作者:
    James O. Thostenson;Zhongxi Li;C. H. Kim;A. Ajnsztajn;C. Parker;Jie Liu;A. Peterchev;J. Glass;S. Goetz
Microwave metamaterials made by fused deposition 3D printing of a highly conductive copper-based filament
  • DOI:
    10.1063/1.4982718
  • 发表时间:
    2017-05
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Yangbo Xie;Shengrong Ye;Christopher Reyes;P. Sithikong;B. Popa;B. Wiley;S. Cummer
  • 通讯作者:
    Yangbo Xie;Shengrong Ye;Christopher Reyes;P. Sithikong;B. Popa;B. Wiley;S. Cummer
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shengrong Ye其他文献

Morphology control of SBA-15 in chiral organic acid media
SBA-15 在手性有机酸介质中的形态控制
D printing electronic components and circuits with conductive hermoplastic filament
使用导电热塑性长丝 D 打印电子元件和电路
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    atrick F. Flowers;Christopher Reyes;Shengrong Ye;M. Kim;B. Wiley
  • 通讯作者:
    B. Wiley

Shengrong Ye的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

服务供给方两阶段在线贡献行为的激励机制研究——以公立互联网医院为例
  • 批准号:
    72372016
  • 批准年份:
    2023
  • 资助金额:
    40.6 万元
  • 项目类别:
    面上项目
黄土高原人工刺槐林不同发育阶段水分利用规律与耗水机制
  • 批准号:
    42307415
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
壳斗科植物传播前阶段种子捕食的地理格局及其驱动机制
  • 批准号:
    32371612
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
计及海量多元逆变资源下垂参数动态优化的配电网多阶段协调运行研究
  • 批准号:
    52307091
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
非洲爪蟾IV型干扰素IFN-upsilon在不同发育阶段的抗病毒功能研究
  • 批准号:
    32303043
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

STTR Phase I: A Next-Generation Computationally Efficient Software for Simulating Additive Manufacturing Processes of Metals
STTR 第一阶段:用于模拟金属增材制造工艺的下一代计算高效软件
  • 批准号:
    2112175
  • 财政年份:
    2021
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
STTR Phase I: Additive Manufacturing of High Conductivity- High Strength Copper-Based Alloys
STTR第一阶段:高导电率-高强度铜基合金的增材制造
  • 批准号:
    2014711
  • 财政年份:
    2020
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
STTR Phase I: Additive manufacturing of ceramic composites for next generation gas turbines
STTR 第一阶段:下一代燃气轮机陶瓷复合材料的增材制造
  • 批准号:
    1549688
  • 财政年份:
    2016
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
STTR Phase I: Additive manufacturing processes for iron based amorphous metal components
STTR 第一阶段:铁基非晶金属部件的增材制造工艺
  • 批准号:
    1549770
  • 财政年份:
    2016
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
STTR Phase I: Additive Manufacturing of Advanced Satellite Panels
STTR 第一阶段:先进卫星面板的增材制造
  • 批准号:
    0512641
  • 财政年份:
    2005
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了