String Compactifications: From Geometry To Effective Field Theory

弦紧化:从几何到有效场论

基本信息

项目摘要

This award funds the research activities of Professors Lara Anderson, James Gray, and Eric Sharpe at Virginia Tech.In string theory --- a proposal for a fundamental theory of quantum gravity --- the roles of physics and geometry are intrinsically intertwined. While the questions that string theory attempts to answer are physical, the path to those answers frequently leads to cutting-edge challenges in modern mathematics. This award will fund a collaborative program of research to explore the physics that arises from string compactifications. The goals of this work include strengthening the links between string theory and current progress in particle physics by developing new foundational tools for the subject of string phenomenology. In addition, Professors Anderson, Gray and Sharpe aim to further bound and characterize the geometries arising in string compactifications. Experience shows that when strong physical requirements are expressed in the language of geometry, they can open the door to new and unexpected results in both physics and mathematics. As a result, research in this area advances the national interest by promoting the progress of basic science. Professors Anderson, Gray and Sharpe will involve junior scientists in this project, including a postdoctoral researcher and several graduate students who will take part in the collaborative research. Their efforts will include the organizing of conferences and workshops that will increase dialog between physicists and mathematicians on pressing problems at the boundary of both fields. In all of these aspects of student training and professional dialog, Professors Anderson, Sharpe and Gray are committed to actively encouraging the inclusion of under-represented groups into the frontline of progress in the sciences. More specifically, the PIs will study two of the most flexible frameworks for four-dimensional compactifications of string theory: Heterotic string theory and F-theory. Within heterotic string theory, novel descriptions of the physical and geometric moduli spaces will be used to compute previously undetermined aspects of the effective theory, including the N=1 matter field Kahler potential and physically normalized Yukawa couplings. The nonperturbative contributions to Yukawa couplings will also be computed via quantum sheaf cohomology, a generalization of ordinary quantum cohomology. This work will explore new dualities including (0,2) mirror symmetry, as well as the global structure of the moduli space of SCFT's. Within F-theory, new results in the geometry of elliptic fibrations will be used to study the properties of singular Calabi-Yau manifolds and their links to Hitchin systems, as well as to study the implications of the ubiquity of multiply fibered manifolds for string dualities and effective theories. Recent progress in geometry will be used to extract new features of the effective theories describing F-theory compactifications, including the explicit four-dimensional field-dependent form of flux contributions to the superpotential.
该奖项资助弗吉尼亚理工大学劳拉·安德森(Lara Anderson)、詹姆斯·格雷(James Gray)和埃里克·夏普(Eric Sharpe)教授的研究活动。在弦理论(量子引力基本理论的提议)中,物理学和几何学的作用本质上是相互交织的。虽然弦理论试图回答的问题是物理问题,但通往这些答案的道路经常会导致现代数学的前沿挑战。该奖项将资助一项合作研究计划,以探索弦紧化产生的物理学。这项工作的目标包括通过为弦现象学学科开发新的基础工具来加强弦理论与粒子物理学当前进展之间的联系。此外,安德森、格雷和夏普教授的目标是进一步限制和表征弦紧化中出现的几何形状。经验表明,当用几何语言表达强烈的物理要求时,它们可以为物理和数学方面新的、意想不到的结果打开大门。 因此,该领域的研究通过促进基础科学的进步来促进国家利益。 安德森、格雷和夏普教授将让年轻科学家参与该项目,包括一名博士后研究员和几名研究生,他们将参与合作研究。他们的努力将包括组织会议和研讨会,以增加物理学家和数学家之间关于两个领域边界紧迫问题的对话。在学生培训和专业对话的所有这些方面,安德森、夏普和格雷教授致力于积极鼓励将代表性不足的群体纳入科学进步的前线。更具体地说,PI 将研究弦理论四维压缩的两个最灵活的框架:异质弦理论和 F 理论。在异质弦理论中,物理和几何模空间的新颖描述将用于计算有效理论先前未确定的方面,包括 N=1 物质场卡勒势和物理归一化汤川耦合。对汤川耦合的非微扰贡献也将通过量子束上同调(普通量子上同调的推广)来计算。这项工作将探索新的对偶性,包括 (0,2) 镜像对称性,以及 SCFT 模空间的全局结构。在 F 理论中,椭圆纤维振动几何的新结果将用于研究奇异 Calabi-Yau 流形的性质及其与希钦系统的联系,以及研究普遍存在的多纤维流形对弦对偶性的影响和有效的理论。几何学的最新进展将用于提取描述 F 理论紧化的有效理论的新特征,包括对超势的通量贡献的显式四维场相关形式。

项目成果

期刊论文数量(30)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A proposal for nonabelian $(0,2)$ mirrors
非阿贝尔 $(0,2)$ 镜子的提案
(0,2) versions of exotic (2,2) GLSMs
奇异 (2,2) GLSM 的 (0,2) 版本
GLSM realizations of maps and intersections of Grassmannians and Pfaffians
Grassmannians 和 Pfaffians 的地图和交集的 GLSM 实现
  • DOI:
    10.1007/jhep04(2018)119
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Căldăraru, Andrei;Knapp, Johanna;Sharpe, Eric
  • 通讯作者:
    Sharpe, Eric
F-theory on quotient threefolds with (2,0) discrete superconformal matter
(2,0) 离散超共形物质的商三倍的 F 理论
  • DOI:
    10.1007/jhep06(2018)098
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    L. B. Anderson;A. Grassi;J. Gray;P. K. Oehlmann
  • 通讯作者:
    P. K. Oehlmann
Landau–Ginzburg models for certain fiber products with curves
某些带有曲线的纤维产品的 Landau-Ginzburg 模型
  • DOI:
    10.1016/j.geomphys.2018.11.012
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Chen, Zhuo;Pantev, Tony;Sharpe, Eric
  • 通讯作者:
    Sharpe, Eric
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lara Anderson其他文献

Across Time, Space, and Matter
跨越时间、空间和物质
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. R. Song;R. Earle;Melissa Fuster;Lara Anderson;Jordana Mendelson
  • 通讯作者:
    Jordana Mendelson
Patients from residential aged care with hip fractures—Does discharge destination from acute care affect outcomes?
来自住院老年护理中心的髋部骨折患者——急性护理的出院目的地是否会影响结果?
  • DOI:
    10.1111/ajag.12824
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Lara Anderson;Chris Moran;S. Liew;L. Kimmel
  • 通讯作者:
    L. Kimmel
Writing from and for the Periphery
来自外围并为外围写作
A scoping review to determine themes that represent perceptions of self as mother (‘ideal mother’ vs ‘real mother’)
范围审查以确定代表自我作为母亲的看法的主题(“理想母亲”与“真正的母亲”)

Lara Anderson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lara Anderson', 18)}}的其他基金

String Compactifications: From Geometry to Effective Field Theory
弦紧化:从几何到有效场论
  • 批准号:
    2310588
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
A Symposium on Challenges at the Interface of String Phenomenology and Geometry
弦现象学与几何学接口挑战研讨会
  • 批准号:
    1733639
  • 财政年份:
    2017
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
A Three-Workshop Series on the Mathematics and Physics of F-theory
F 理论数学和物理三期研讨会系列
  • 批准号:
    1603247
  • 财政年份:
    2016
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
String Phenomenology and Geometry
弦现象学与几何
  • 批准号:
    1417337
  • 财政年份:
    2014
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
GRADUATE RESEARCH FELLOWSHIPS
研究生研究奖学金
  • 批准号:
    0435775
  • 财政年份:
    2004
  • 资助金额:
    $ 60万
  • 项目类别:
    Fellowship Award

相似国自然基金

面向孤岛新能源消纳的低成本紧凑化―HVDC灵活接入型换流站构建方法及应用
  • 批准号:
    52307210
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
面向直流配网的高变比、紧凑型、模块化光伏汇集系统关键技术研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
低雷诺数环境下一体化超紧凑过渡段非定常流动机理研究
  • 批准号:
    51906242
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于可饱和脉冲变压器的紧凑固态化重复频率LC-Marx发生器研究
  • 批准号:
    51477177
  • 批准年份:
    2014
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目
超紧凑高低压涡轮过渡段内部复杂流动机理及一体化设计基础问题研究
  • 批准号:
    51476166
  • 批准年份:
    2014
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目

相似海外基金

String Compactifications: From Geometry to Effective Field Theory
弦紧化:从几何到有效场论
  • 批准号:
    2310588
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
String Compactifications: From Geometry to Effective Field Theory
弦紧化:从几何到有效场论
  • 批准号:
    2014086
  • 财政年份:
    2020
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Research in Geometry, String Compactifications, and Mathematical String Theory
几何、弦紧化和数学弦理论研究
  • 批准号:
    1417410
  • 财政年份:
    2014
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Geometry and Physics of String Compactifications
弦紧化的几何和物理
  • 批准号:
    1217109
  • 财政年份:
    2012
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Research in Geometry, String Compactifications, and Mathematical String Theory.
几何、弦紧化和数学弦理论研究。
  • 批准号:
    1068725
  • 财政年份:
    2011
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了