RI: Small: Model-Based Deep Reinforcement Learning for Domain Transfer
RI:小型:用于域迁移的基于模型的深度强化学习
基本信息
- 批准号:1700697
- 负责人:
- 金额:$ 47.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to develop machine learning algorithms that can enable automated decision making and control in applications that require autonomous agents to interact with the real world. In particular, the project will examine two application areas: autonomous robots and educational agents that interact with human students to facilitate learning. The principal technical development investigated in this project will center around applications of deep neural networks (deep learning) to efficiently learn predictive models of the world, such as the physical environment of the robot or the behavior of a human student using an interactive educational agent. Deep learning has enabled impressive advances in passive perception domains such as computer vision and speech recognition, but typically requires very large amounts of data to succeed. This is often a major challenge in interactive settings, where a robot cannot interact with its environment for weeks or months just to learn a single behavior. To address this challenge, this project will investigate how predictive models can be transferred from prior tasks into a new task. The technologies developed as part of this project could enable substantially more sophisticated autonomous systems that can adapt quickly to new situations through transfer. Economic impact could include new consumer robotics products and improved education through intelligent automation.Reinforcement learning holds the promise of automating complex decision making and control in the presence of uncertainty. For a wide range of real-world problems, from robotic control and autonomous vehicles to interactive educational tools, this would provide dramatic improvements in capability and reduction in engineering cost. However, applying reinforcement learning to complex, unstructured environments and real-world problems with raw inputs, such as images and sounds, remains tremendously difficult. Deep learning has shown a great deal of promise for tackling complex learning problems, especially ones that require parsing high-dimensional, raw sensory signals, but the most successful applications of deep learning use very large amounts of labeled data. This is at odds with the demands of reinforcement learning, where the goal is typically to learn an effective policy using the minimal amount of interaction. This projects aims to address this challenge by developing algorithms for model-based deep reinforcement learning, where a generalizable model is learned from past experience on related but different tasks, and then transferred to a new task to learn it very quickly, directly using raw sensory inputs.
该项目的目标是开发机器学习算法,可以在需要自主代理与现实世界交互的应用程序中实现自动决策和控制。该项目将特别研究两个应用领域:自主机器人和与人类学生互动以促进学习的教育代理。该项目研究的主要技术开发将围绕深度神经网络(深度学习)的应用来有效地学习世界的预测模型,例如机器人的物理环境或使用交互式教育代理的人类学生的行为。深度学习在计算机视觉和语音识别等被动感知领域取得了令人瞩目的进步,但通常需要大量数据才能取得成功。这通常是交互环境中的一个重大挑战,因为机器人无法为了学习单一行为而与环境交互数周或数月。为了应对这一挑战,该项目将研究如何将预测模型从先前的任务转移到新的任务中。作为该项目一部分开发的技术可以实现更加复杂的自主系统,这些系统可以通过传输快速适应新情况。经济影响可能包括新的消费机器人产品和通过智能自动化改善教育。强化学习有望在存在不确定性的情况下实现复杂决策和控制的自动化。对于广泛的现实问题,从机器人控制和自动驾驶车辆到交互式教育工具,这将显着提高功能并降低工程成本。然而,将强化学习应用于复杂的、非结构化的环境以及具有原始输入(例如图像和声音)的现实问题仍然非常困难。深度学习在解决复杂的学习问题方面展现出了巨大的前景,特别是那些需要解析高维、原始感官信号的问题,但深度学习最成功的应用使用了大量的标记数据。这与强化学习的要求不一致,强化学习的目标通常是使用最少的交互来学习有效的策略。该项目旨在通过开发基于模型的深度强化学习算法来应对这一挑战,其中可概括的模型是从过去相关但不同任务的经验中学习的,然后转移到新任务以直接使用原始感官快速学习输入。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sergey Levine其他文献
AutoRT: Embodied Foundation Models for Large Scale Orchestration of Robotic Agents
AutoRT:机器人代理大规模编排的具体基础模型
- DOI:
10.48550/arxiv.2401.12963 - 发表时间:
2024-01-23 - 期刊:
- 影响因子:0
- 作者:
Michael Ahn;Debidatta Dwibedi;Chelsea Finn;Montse Gonzalez Arenas;K. Gopalakrishnan;Karol Hausman;Brian Ichter;A. Irpan;Nikhil Joshi;Ryan C. Julian;Sean Kirmani;Isabel Leal;T. Lee;Sergey Levine;Yao Lu;Sharath Maddineni;Kanishka Rao;Dorsa Sadigh;Pannag R. Sanketi;P. Sermanet;Q. Vuong;Stefan Welker;Fei Xia;Ted Xiao;Peng Xu;Steve Xu;Zhuo Xu - 通讯作者:
Zhuo Xu
Cal-QL: Calibrated Offline RL Pre-Training for Efficient Online Fine-Tuning
Cal-QL:经过校准的离线强化学习预训练,可实现高效的在线微调
- DOI:
- 发表时间:
1970-01-01 - 期刊:
- 影响因子:0
- 作者:
Mitsuhiko Nakamoto;Yuexiang Zhai;Anika Singh;Max Sobol Mark;Yi Ma;Chelsea Finn;Aviral Kumar;Sergey Levine;Uc Berkeley - 通讯作者:
Uc Berkeley
Is Value Learning Really the Main Bottleneck in Offline RL?
价值学习真的是离线强化学习的主要瓶颈吗?
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Seohong Park;Kevin Frans;Sergey Levine;Aviral Kumar - 通讯作者:
Aviral Kumar
MOKA: Open-Vocabulary Robotic Manipulation through Mark-Based Visual Prompting
MOKA:通过基于标记的视觉提示进行开放词汇机器人操作
- DOI:
10.48550/arxiv.2403.03174 - 发表时间:
2024-03-05 - 期刊:
- 影响因子:0
- 作者:
Fangchen Liu;Kuan Fang;Pieter Abbeel;Sergey Levine - 通讯作者:
Sergey Levine
FMB: a Functional Manipulation Benchmark for Generalizable Robotic Learning
FMB:通用机器人学习的功能操作基准
- DOI:
10.48550/arxiv.2401.08553 - 发表时间:
2024-01-16 - 期刊:
- 影响因子:0
- 作者:
Jianlan Luo;Charles Xu;Fangchen Liu;Liam Tan;Zipeng Lin;Jeffrey Wu;Pieter Abbeel;Sergey Levine - 通讯作者:
Sergey Levine
Sergey Levine的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sergey Levine', 18)}}的其他基金
RI: Small: Extracting Knowledge from Language Models for Decision Making
RI:小型:从语言模型中提取知识以进行决策
- 批准号:
2246811 - 财政年份:2023
- 资助金额:
$ 47.93万 - 项目类别:
Standard Grant
Robotic Learning with Reusable Datasets
使用可重复使用的数据集进行机器人学习
- 批准号:
2150826 - 财政年份:2022
- 资助金额:
$ 47.93万 - 项目类别:
Standard Grant
CAREER: Deep Robotic Learning with Large Datasets: Toward Simple and Reliable Lifelong Learning Frameworks
职业:大数据集的深度机器人学习:迈向简单可靠的终身学习框架
- 批准号:
1651843 - 财政年份:2017
- 资助金额:
$ 47.93万 - 项目类别:
Continuing Grant
NRI: Collaborative Research: Learning Deep Sensorimotor Policies for Shared Autonomy
NRI:协作研究:学习共享自主权的深度感觉运动策略
- 批准号:
1700696 - 财政年份:2016
- 资助金额:
$ 47.93万 - 项目类别:
Standard Grant
NRI: Collaborative Research: Learning Deep Sensorimotor Policies for Shared Autonomy
NRI:协作研究:学习共享自主权的深度感觉运动策略
- 批准号:
1637443 - 财政年份:2016
- 资助金额:
$ 47.93万 - 项目类别:
Standard Grant
RI: Small: Model-Based Deep Reinforcement Learning for Domain Transfer
RI:小型:用于域迁移的基于模型的深度强化学习
- 批准号:
1614653 - 财政年份:2016
- 资助金额:
$ 47.93万 - 项目类别:
Standard Grant
RI: Small: Model-Based Deep Reinforcement Learning for Domain Transfer
RI:小型:用于域迁移的基于模型的深度强化学习
- 批准号:
1614653 - 财政年份:2016
- 资助金额:
$ 47.93万 - 项目类别:
Standard Grant
相似国自然基金
解析小分子诱导型血管内皮细胞的分化机制并利用AMI猪模型研究其移植治疗效果
- 批准号:32370854
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
光强调控蜡质合成机制的研究--以小灌木蜡叶越橘为模型
- 批准号:32371831
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于PBPK/PD模型的非小细胞肺癌患者中利伐沙班与ALK抑制剂的药物相互作用研究
- 批准号:82304620
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
复杂场景下模型—数据联合驱动的红外小目标检测研究
- 批准号:62303165
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于新型定量模型的荧光纳米探针用于复杂体系小分子检测及成像研究
- 批准号:22367004
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
RI:Small:Exploring Efficient Bayesian Model-Augmentation Techniques for Decomposible Contrastive Representation Learning
RI:Small:探索可分解对比表示学习的高效贝叶斯模型增强技术
- 批准号:
2223292 - 财政年份:2022
- 资助金额:
$ 47.93万 - 项目类别:
Standard Grant
RI: Small: Robust Model-Based Identification, Navigation, and Control of Underactuated Underwater Vehicles
RI:小型:基于鲁棒模型的欠驱动水下航行器识别、导航和控制
- 批准号:
1909182 - 财政年份:2019
- 资助金额:
$ 47.93万 - 项目类别:
Standard Grant
RI: Small: A Unified Compositional Model for Explainable Video-based Human Activity Parsing
RI:小型:用于可解释的基于视频的人类活动解析的统一组合模型
- 批准号:
1815561 - 财政年份:2018
- 资助金额:
$ 47.93万 - 项目类别:
Standard Grant
RI: SMALL: Fast Prediction and Model Compression for Large-Scale Machine Learning
RI:SMALL:大规模机器学习的快速预测和模型压缩
- 批准号:
1901527 - 财政年份:2018
- 资助金额:
$ 47.93万 - 项目类别:
Standard Grant
RI: SMALL: Fast Prediction and Model Compression for Large-Scale Machine Learning
RI:SMALL:大规模机器学习的快速预测和模型压缩
- 批准号:
1719097 - 财政年份:2017
- 资助金额:
$ 47.93万 - 项目类别:
Standard Grant