EAGER: TDM solar cells: Bifacial III-V nanowire array on silicon tandem solar cells

EAGER:TDM 太阳能电池:硅串联太阳能电池上的双面 III-V 纳米线阵列

基本信息

  • 批准号:
    1665086
  • 负责人:
  • 金额:
    $ 29.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-05-01 至 2020-10-31
  • 项目状态:
    已结题

项目摘要

Abstract:Non-Technical:Conventional state-of-the-art tandem junction photovoltaic solar cells, composed of multiple sub-cells of III-V compound semiconductors, are capable of converting incident radiation from the Sun to electricity with greater efficiency than all other types of solar cells. The high performance of these devices is enabled in part due to the use of high quality monocrystalline III-V materials and in part due to the coupling of multiple sub-cells that collectively allow for absorption of a broadband solar spectral range. However, the materials and manufacturing costs required for the development of III-V tandem junction devices is prohibitively high for use in wide-scale terrestrial consumer applications. As a consequence, the world's highest performance solar cells are limited to use in niche markets such as terrestrial high concentration and space power applications. A high-risk, high-payoff exploratory research path is proposed here that aims to provide an unconventional, yet potentially transformative nanotechnology-enabled solution to the above consumer market penetration challenges faced by state-of-the-art tandem junction solar cells. The project aims to dramatically reduce manufacturing costs by monolithically integrating III-V sub-cell composed of vertical nanowire arrays to a central silicon sub-cell, thereby simultaneously eliminating the primary III-V substrate cost-driver while cutting III-V crystal growth volumes by up to 95% compared to conventional technologies. The broader significance of this EAGER project lies in the potential realization of a low-cost and high-efficiency renewable energy innovation that provides greater national energy independence and clean power. This research also impacts and advances fundamental knowledge in science and engineering in the fields of physics, nanomaterials growth and characterization, nanoelectronics, and optoelectronics. Immediate anticipated societal impacts include outreach activities that promote science, technology, engineering, and mathematics concepts to the general public, training new members of a highly-skilled workforce, and direct inclusion of high school, undergraduate, and graduate students from under-represented communities. Technical:The technical approach of this EAGER project relies on selective-area heteroepitaxy of a GaAsP (1.75 eV) nanowire array on the top surface of a thinned Si (1.1 eV) sub-cell by metal-organic chemical vapor deposition. A bifacial, three dissimilar materials, tandem junction device is formed via monolithic integration of a back-side InGaAs (0.5 eV) nanowire array. The vertical nanowires comprising the top- and back-surface arrays will contain radially-segmented p-i-n junctions and will be serially connected to the central Si sub-cell via epitaxial tunnel junctions. This design enables absorption of broadband incident solar energy as well as albedo radiation. Standard lattice-matching constraints are overcome via strain relaxation along nanowire free surfaces. Therefore, ideal spectral matching is realized without a need for graded buffer layers or dislocation mediation strategies. Use of vertical nanowire arrays with coaxial p-i-n junction geometries permits key advantages, including near-unity absorption of solar irradiance at normal and tilted incidence without the use of anti-reflection coatings, decoupling of photon absorption and carrier collection directions, and dramatic reduction of 95% in epitaxial volumes. Rigorous modeling of device parameters will be iteratively coupled with extensive materials characterization and property correlation experiments for optimization of III-V sub-cell structure on the single nanowire and ensemble array levels. The ultimate target of this work is demonstration of a functional bifacial, three dissimilar materials, nanowire-based tandem junction solar cell with one Sun power conversion efficiency of 30% or better.
摘要:非技术性:传统最先进的串联结光伏太阳能电池由多个 III-V 族化合物半导体子电池组成,能够将太阳的入射辐射转化为电能,效率高于所有其他太阳能电池太阳能电池的类型。这些器件的高性能部分归功于高质量单晶 III-V 材料的使用,部分归功于多个子电池的耦合,这些子电池共同允许吸收宽带太阳光谱范围。然而,开发 III-V 串联结器件所需的材料和制造成本对于大规模地面消费应用而言过高。因此,世界上最高性能的太阳能电池仅限于在地面高聚光和空间电力应用等利基市场中使用。本文提出了一条高风险、高回报的探索性研究路径,旨在提供一种非常规但具有潜在变革性的纳米技术解决方案,以应对最先进的串联结太阳能电池面临的上述消费市场渗透挑战。该项目旨在通过将由垂直纳米线阵列组成的 III-V 子电池单片集成到中央硅子电池来大幅降低制造成本,从而消除主要的 III-V 衬底成本驱动因素,同时减少 III-V 晶体生长体积与传统技术相比,效率提高高达 95%。这个EAGER项目更广泛的意义在于有可能实现低成本、高效率的可再生能源创新,从而提供更大的国家能源独立性和清洁电力。这项研究还影响和推进了物理、纳米材料生长和表征、纳米电子学和光电子学领域的科学和工程基础知识。预期的直接社会影响包括向公众推广科学、技术、工程和数学概念的外展活动,培训高技能劳动力的新成员,以及直接纳入来自代表性不足社区的高中生、本科生和研究生。技术:该 EAGER 项目的技术方法依赖于通过金属有机化学气相沉积在薄硅 (1.1 eV) 子电池的顶面上选择性区域异质外延 GaAsP (1.75 eV) 纳米线阵列。通过背面 InGaAs (0.5 eV) 纳米线阵列的单片集成形成双面、三种不同材料的串联结器件。包括顶部和背面阵列的垂直纳米线将包含径向分段的 p-i-n 结,并将通过外延隧道结串联连接到中央硅子电池。这种设计能够吸收宽带入射太阳能以及反照率辐射。通过沿纳米线自由表面的应变弛豫克服了标准晶格匹配约束。因此,无需分级缓冲层或位错调解策略即可实现理想的光谱匹配。使用具有同轴 p-i-n 结几何形状的垂直纳米线阵列具有一些关键优势,包括在不使用抗反射涂层的情况下,在垂直和倾斜入射时近乎均匀地吸收太阳辐照度、光子吸收和载流子收集方向的解耦以及显着降低 95 % 外延体积。器件参数的严格建模将与广泛的材料表征和属性相关实验迭代结合,以优化单纳米线和整体阵列级别的 III-V 子电池结构。这项工作的最终目标是展示一种功能性双面、三种不同材料、基于纳米线的串联结太阳能电池,其单太阳功率转换效率可达 30% 或更高。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Design and Simulation of the Bifacial III-V-Nanowire-on-Si Solar Cell
双面 III-V-纳米线硅太阳能电池的设计与仿真
  • DOI:
    10.1557/adv.2019.127
  • 发表时间:
    2019-02
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Fedorenko, Anastasiia;Baboli, Mohadeseh A.;Mohseni, Parsian K.;Hubbard, Seth M.
  • 通讯作者:
    Hubbard, Seth M.
Self-Assembled InAsP and lnAlAs Nanowires on Graphene Via Pseudo-Van Der Waals Epitaxy
通过伪范德华外延在石墨烯上自组装 InAsP 和 lnAlAs 纳米线
Improving pseudo-van der Waals epitaxy of self-assembled InAs nanowires on graphene via MOCVD parameter space mapping
通过 MOCVD 参数空间映射改善石墨烯上自组装 InAs 纳米线的伪范德华外延
  • DOI:
    10.1039/c8ce01666f
  • 发表时间:
    2019-01-21
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Mohadeseh A. Baboli;M. Slocum;H. Kum;Thomas S. Wilhelm;S. Polly;S. Hubbard;P. Mohseni
  • 通讯作者:
    P. Mohseni
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Parsian Katal Mohseni其他文献

Direct Observation of Dopants Distribution and Diffusion in GaAs Planar Nanowires with Atom Probe Tomography.
使用原子探针断层扫描直接观察 GaAs 平面纳米线中的掺杂剂分布和扩散。
  • DOI:
    10.1021/acsami.6b08919
  • 发表时间:
    2016-09-27
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Jiangtao Qu;Wonsik Choi;Parsian Katal Mohseni;Xiuling Li;Yingjie Zhang;Hansheng Chen;S. Ringer;R. Zheng
  • 通讯作者:
    R. Zheng

Parsian Katal Mohseni的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于空时分组码的轨道角动量模分复用及其信道串扰特性的研究
  • 批准号:
    12304325
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向航天器结构微变形检测的频谱时分复用自参考数字散斑干涉研究
  • 批准号:
    52375535
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于时分复用的高效-高保真信号和功率复合传输驱动技术
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
DOPO相干伊辛机量子搜索及时分复用机理研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
基于光纤参量放大器及时分复用的连续变量多体纠缠态
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

EAGER: TDM solar cells: Towards Low Cost Manufacturing of 30% Monolithic Perovskite/CuInSe2 Tandems with Solution Processing and Novel Carbon Nanotube Tunnel Junctions
EAGER:%20TDM%20solar%20cells:%20走向%20Low%20Cost%20Manufacturing%20of%2030%%20Monolithic%20Perovskite/CuInSe2%20Tandems%20with%20Solution%20Processing%20and%20Novel%20Carbon%20Nanotube%20Tunnel%20路口
  • 批准号:
    1665172
  • 财政年份:
    2017
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
EAGER:TDM Solar Cells: Collaborative Research: 30%-Efficient, Stable Perovskite/Silicon Monolithic Tandem Solar Cells
EAGER:TDM%20Solar%20%20%20Cells:%20Collaborative%20研究:%20%20%2030%-高效、%20Stable%20钙钛矿/硅%20Monolithic%20Tandem%20Solar%20Cells
  • 批准号:
    1664710
  • 财政年份:
    2017
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
EAGER: TDM solar cells: Next generation perovskite-silicon tandem solar cells
EAGER:TDM 太阳能电池:下一代钙钛矿-硅串联太阳能电池
  • 批准号:
    1665279
  • 财政年份:
    2017
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
EAGER:TDM Solar Cells: Collaborative Research: 30%-Efficient, Stable Perovskite/Silicon Monolithic Tandem Solar Cells
EAGER:TDM%20Solar%20Cells:%20%20Collaborative%20Research:%20%20%2030%-高效、%20Stable%20钙钛矿/硅%20Monolithic%20Tandem%20Solar%20Cells
  • 批准号:
    1664669
  • 财政年份:
    2017
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
EAGER:TDM Solar Cells: Research on CdSe-Si tandem junction cells
EAGER:TDM太阳能电池:CdSe-Si串联结电池的研究
  • 批准号:
    1664945
  • 财政年份:
    2017
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了