Abelianization of Connections in Two and Three Dimensions
二维和三维连接的阿贝尔化
基本信息
- 批准号:1711692
- 负责人:
- 金额:$ 33.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The PI studies problems of geometry using methods imported from particle physics. In joint work with his collaborators, he has recently developed a new geometric technique of "abelianization" -- so called because it reduces nonabelian problems (involving operations for which the order in which we do the operations matters) to simpler abelian ones (where the order does not matter). The PI, together with his collaborators and graduate students, will work on several new applications of abelianization. One application is a new approach to solving certain differential equations, including the Schrodinger equation which governs the physics of some quantum systems. A second application is a new way of measuring the topology of 3-dimensional spaces. The results of this work will be disseminated broadly both in the mathematics and high-energy physics communities, helping to bring these two areas closer together. The work will also contribute to the training of graduate students in both fields.The PI's recent joint work with collaborators introduced a new ingredient to the theory of flat connections: a way of "abelianizing" flat connections on a rank N complex vector bundle over a surface, replacing them by almost-flat connections on a line bundle over an N-fold branched covering surface. The full scope of this new theory is not yet known: it appears that there are many more uses of abelianization yet to be discovered. The PI aims to develop some of these. First, he will study a family of special connections on surfaces called "opers," which can be abelianized in a canonical way. On the one hand, this is a warmup for the abelianization of the twistor lines in the Hitchin system. On the other hand, it gives a new way of understanding the locus of opers and thus a new perspective on many related issues, from the classical theory of linear scalar differential operators to nonperturbative extensions of topological string theory. Second, he will consider abelianization on a 3-manifold instead of a surface. One immediate application is the development of new formulas for classical complex Chern-Simons invariants. Third, the PI aims to develop a new relation between abelianization and Floer theory on cotangent bundles.
PI使用从粒子物理学导入的方法研究几何问题。在与他的合作者的联合合作中,他最近开发了一种新的“ Abelianization”的几何技术 - 之所以如此,是因为它减少了非阿贝尔问题(涉及我们执行操作重要的顺序)到更简单的Abelian(命令无关紧要)。 PI与他的合作者和研究生一起,将研究几种新的Abelianization应用程序。一种应用是一种解决某些微分方程的新方法,包括控制某些量子系统物理的Schrodinger方程。第二个应用是一种测量3维空间拓扑的新方法。这项工作的结果将在数学和高能物理社区中广泛传播,从而使这两个领域更加紧密地结合在一起。这项工作还将有助于对两个领域的研究生进行培训。PI最近与合作者的联合合作引入了对平坦联系理论的新成分:一种在表面上的平台N复合矢量捆绑包上“ Abelianization”平面连接的方法,将它们替换为N-Flat连接在N-Flat bunndle的n-Flat Bundled bunderd覆盖封面的表面上。该新理论的全部范围尚不清楚:似乎还有更多的Abelianization使用。 PI旨在开发其中一些。 首先,他将研究一个称为“ Opers”的表面上的特殊连接家族,可以以规范的方式进行ABELIAN。 一方面,这是Hitchin系统中扭曲线的Abelianization的热身。另一方面,它给出了一种新的理解操作源的方式,因此从线性标量差分运算符的经典理论到拓扑字符串理论的非扰动扩展。其次,他将考虑在3个manifold而不是表面上的Abelianization。一个即时应用是为古典复杂的Chern-Simons开发新公式。第三,PI旨在建立Abelianization与Cotangengent束的浮动理论之间的新关系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Ben-Zvi其他文献
David Ben-Zvi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Ben-Zvi', 18)}}的其他基金
L-functions via geometric quantization
通过几何量化的 L 函数
- 批准号:
2302346 - 财政年份:2023
- 资助金额:
$ 33.42万 - 项目类别:
Continuing Grant
Arithmetic Aspects of Electric-Magnetic Duality
电磁二象性的算术方面
- 批准号:
2001398 - 财政年份:2020
- 资助金额:
$ 33.42万 - 项目类别:
Continuing Grant
Geometric Aspects of Field Theories and Lattice Models
场论和晶格模型的几何方面
- 批准号:
2005286 - 财政年份:2020
- 资助金额:
$ 33.42万 - 项目类别:
Continuing Grant
Representation Theory as Gauge Theory
作为规范理论的表示论
- 批准号:
1705110 - 财政年份:2017
- 资助金额:
$ 33.42万 - 项目类别:
Continuing Grant
Noncommutative and Hamiltonian geometry, symplectic resolutions, and D-modules
非交换几何和哈密顿几何、辛分辨率和 D 模
- 批准号:
1406553 - 财政年份:2014
- 资助金额:
$ 33.42万 - 项目类别:
Continuing Grant
The local Langlands correspondence in l-adic families
l-adic 家族中当地朗兰兹的对应
- 批准号:
1161582 - 财政年份:2012
- 资助金额:
$ 33.42万 - 项目类别:
Standard Grant
Geometric Harmonic Analysis and Applications
几何调和分析及应用
- 批准号:
1103525 - 财政年份:2011
- 资助金额:
$ 33.42万 - 项目类别:
Continuing Grant
CAREER: Representation Theory on Curves
职业:曲线表示论
- 批准号:
0449830 - 财政年份:2005
- 资助金额:
$ 33.42万 - 项目类别:
Standard Grant
Algebraic Geometry of Difference Operators and Real Bundles
差分算子和实丛的代数几何
- 批准号:
0401448 - 财政年份:2004
- 资助金额:
$ 33.42万 - 项目类别:
Standard Grant
相似国自然基金
二维烯烃连接共价有机框架材料的合成及其在柔性摩擦纳米发电机中的研究
- 批准号:52103277
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
木素不同结构单元及其连接方式对纸浆二氧化氯漂白AOX生成的影响
- 批准号:21968004
- 批准年份:2019
- 资助金额:41 万元
- 项目类别:地区科学基金项目
E3泛素化连接酶WWP2调控PARP1在心肌损伤及心衰中的作用及其机制研究
- 批准号:81900355
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
π共轭共价有机框架材料的合成、表征及其光催化应用研究
- 批准号:21905150
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
基于不同金属薄层的新型中间连接层以及高效率、低衰减串联型热活化延迟荧光白光有机发光二极管的组装
- 批准号:61805211
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Cross-modal plasticity after the loss of vision at two early developmental ages in the posterior parietal cortex: Adult connections, cortical function and behavior.
后顶叶皮质两个早期发育年龄视力丧失后的跨模式可塑性:成人连接、皮质功能和行为。
- 批准号:
10751658 - 财政年份:2023
- 资助金额:
$ 33.42万 - 项目类别:
Diabetes Connections - Shookaawaapinewin Mamow Wicihiwewin: Reorienting diabetes care in First Nations communities in Northwestern Ontario through empowerment, autonomy and ownership for health and wellbeing
糖尿病联系 - Shookaawaapinewin Mamow Wicihiwewin:通过健康和福祉的赋权、自主权和所有权重新定位安大略省西北部原住民社区的糖尿病护理
- 批准号:
474008 - 财政年份:2022
- 资助金额:
$ 33.42万 - 项目类别:
Operating Grants
Contribution of recurrent connections to the accuracy of binary classification problem in cultured neuronal circuits
循环连接对培养神经元回路中二元分类问题准确性的贡献
- 批准号:
20K19925 - 财政年份:2020
- 资助金额:
$ 33.42万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Advanced mechanical characterisation of two phase CO2 cooling pipe connections for the CMS tracker upgrade.
用于 CMS 跟踪器升级的两相 CO2 冷却管连接的高级机械特性。
- 批准号:
2283495 - 财政年份:2019
- 资助金额:
$ 33.42万 - 项目类别:
Studentship
In vivo two-photon calcium imaging of top-down connections in the marmoset visual cortex
狨猴视觉皮层自上而下连接的体内双光子钙成像
- 批准号:
17K14931 - 财政年份:2017
- 资助金额:
$ 33.42万 - 项目类别:
Grant-in-Aid for Young Scientists (B)