Polynomial Methods in Discrete Geometry
离散几何中的多项式方法
基本信息
- 批准号:1710305
- 负责人:
- 金额:$ 15.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2017-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Starting around 2009, a series of difficult longstanding combinatorial problems have been solved by using algebraic techniques. This led to a new subfield that is sometimes called "the Polynomial Method". The philosophy behind this subfield is that collections of objects that exhibit an extremal behavior often have hidden algebraic structure. As a simple example, if a finite set of points in the plane contains many pairs that are at a distance of 1 from each other, one might expect this set to have a grid structure. Once the algebraic structure is found, it can be exploited to gain a better understanding of the original problem. To expose the algebraic structure, one defines polynomials on the studied objects and explores their properties by using algebraic tools, often from Algebraic Geometry. For example, for a problem involving a finite set of points in the plane, one might wish to study the properties of a minimum-degree polynomial that vanishes on the point set. Beyond solving various longstanding problems, this new subfield is also leading to the discovery of interesting connections between Combinatorial Geometry and other fields, such as Harmonic Analysis and Theoretical Computer Science. This project is based on the assumption that the new "algebraic era" in Combinatorial Geometry has not yet reached its peak. It investigates further problems that seem approachable via algebraic techniques, and aims to further develop the current algebraic tools.The first part of this project involves studying several main open problems in Discrete Geometry by using algebraic methods. Specifically, studying the distinct distances problem in R^d, the characterization of point sets that determine few distinct distances, and the problem of deriving stronger and more general bounds for incidence problems. Part of the importance of deriving stronger incidence bounds is that many problems can be reduced to incidence problems (including problems from Combinatorics, Harmonic Analysis, and Number Theory). The second part of the project concerns connections between Discrete Geometry and Additive Combinatorics, also by using polynomial methods. This partly involves further studying known connections between the two fields, but focuses mainly on establishing a new type of connection. This connection consists of defining geometric variants of additive energy and extending some of the known additive energy results to these variants (such as the Balog-Szemeredi-Gowers theorem and higher moment energies).
从 2009 年左右开始,一系列长期存在的困难组合问题已经通过代数技术得到了解决。这导致了一个新的子领域,有时被称为“多项式方法”。该子领域背后的哲学是,表现出极值行为的对象集合通常具有隐藏的代数结构。举一个简单的例子,如果平面上的有限点集包含许多彼此距离为 1 的点对,人们可能会期望该集具有网格结构。一旦找到代数结构,就可以利用它来更好地理解原始问题。为了揭示代数结构,人们定义了所研究对象的多项式,并使用代数工具(通常来自代数几何)探索其属性。例如,对于涉及平面上有限点集的问题,人们可能希望研究在点集上消失的最小次数多项式的属性。除了解决各种长期存在的问题之外,这个新的子领域还导致发现组合几何与其他领域(例如调和分析和理论计算机科学)之间有趣的联系。该项目基于这样的假设:组合几何的新“代数时代”尚未达到顶峰。它进一步研究了似乎可以通过代数技术解决的问题,并旨在进一步开发当前的代数工具。该项目的第一部分涉及使用代数方法研究离散几何中的几个主要开放问题。具体来说,研究 R^d 中的不同距离问题、确定少数不同距离的点集的表征,以及为关联问题导出更强、更通用的界限的问题。导出更强的关联界限的部分重要性在于,许多问题可以简化为关联问题(包括组合学、调和分析和数论中的问题)。该项目的第二部分涉及离散几何和加法组合之间的联系,也是通过使用多项式方法。这部分涉及进一步研究两个领域之间的已知联系,但主要侧重于建立一种新型联系。这种联系包括定义加性能量的几何变体,并将一些已知的加性能量结果扩展到这些变体(例如 Balog-Szemeredi-Gowers 定理和更高的矩能量)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adam Sheffer其他文献
Distinct Distances in $R^3$ Between Quadratic and Orthogonal Curves
二次曲线和正交曲线之间的 $R^3$ 不同距离
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Toby Aldape;Jing;Gregory Pylypovych;Adam Sheffer;Minh - 通讯作者:
Minh
Bisector Energy and Few Distinct Distances
平分线能量和很少的不同距离
- DOI:
10.1007/s00454-016-9783-5 - 发表时间:
2016 - 期刊:
- 影响因子:0.8
- 作者:
Ben D. Lund;Adam Sheffer;Frank de Zeeuw - 通讯作者:
Frank de Zeeuw
New Approaches to Some Problems in Combinatorial Geometry/ Adam, Sheffer
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Adam Sheffer - 通讯作者:
Adam Sheffer
The constant of point-line incidence constructions
点线重合结构常数
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
M. Balko;Adam Sheffer;Ru - 通讯作者:
Ru
A Structural Szemerédi-Trotter Theorem for Cartesian Products
笛卡尔积的结构Szemerédi-Trotter定理
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0.8
- 作者:
Adam Sheffer;O. Silier - 通讯作者:
O. Silier
Adam Sheffer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adam Sheffer', 18)}}的其他基金
Conference: The Polymath Jr Program
会议:小博学者计划
- 批准号:
2341670 - 财政年份:2024
- 资助金额:
$ 15.54万 - 项目类别:
Continuing Grant
Conference:The 2023 Polymath Jr Program
会议:2023年博学者计划
- 批准号:
2313292 - 财政年份:2023
- 资助金额:
$ 15.54万 - 项目类别:
Standard Grant
REU Site: New York City Discrete Mathematics REU
REU 站点:纽约市离散数学 REU
- 批准号:
2051026 - 财政年份:2021
- 资助金额:
$ 15.54万 - 项目类别:
Standard Grant
Polynomial Methods in Discrete Geometry
离散几何中的多项式方法
- 批准号:
1802059 - 财政年份:2017
- 资助金额:
$ 15.54万 - 项目类别:
Continuing Grant
相似国自然基金
准静态的非线性热多孔弹性力学模型稳定的全离散多物理场有限元方法及其应用
- 批准号:12371393
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
裂缝性多孔介质流基于投影嵌入式离散裂缝模型的广义多尺度方法研究
- 批准号:12301528
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
离散系统变分方法的推广及其应用
- 批准号:12371184
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
反问题变分正则化方法的优化和离散误差估计
- 批准号:12371424
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
数据-知识驱动的离散车间制造资源服务主动发现与协同优化配置方法
- 批准号:52305554
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
NEWWAVE: New methods for analysing travelling waves in discrete systems with applications to neuroscience
NEWWAVE:分析离散系统中行波的新方法及其在神经科学中的应用
- 批准号:
EP/Y027531/1 - 财政年份:2024
- 资助金额:
$ 15.54万 - 项目类别:
Fellowship
Symmetry Methods for Discrete Equations and Their Applications
离散方程的对称性方法及其应用
- 批准号:
24K06852 - 财政年份:2024
- 资助金额:
$ 15.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Measuring the Impact of the Value Flower and Unobserved Heterogeneity on the Cost Effectiveness and Use of Novel Treatments for Alzheimer's Disease and Related Dementias
衡量价值花和未观察到的异质性对阿尔茨海默病和相关痴呆症新疗法的成本效益和使用的影响
- 批准号:
10658457 - 财政年份:2023
- 资助金额:
$ 15.54万 - 项目类别:
PREcision Care In Cardiac ArrEst - ICECAP (PRECICECAP)
心脏骤停的精准护理 - ICECAP (PRECICECAP)
- 批准号:
10842647 - 财政年份:2023
- 资助金额:
$ 15.54万 - 项目类别:
Unifying discrete and continuous methods in quantum information theory
统一量子信息论中的离散和连续方法
- 批准号:
FT230100571 - 财政年份:2023
- 资助金额:
$ 15.54万 - 项目类别:
ARC Future Fellowships