CAREER: Model Theory and Operator Algebras
职业:模型理论和算子代数
基本信息
- 批准号:1708802
- 负责人:
- 金额:$ 33.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Model theory is a branch of mathematical logic which studies classes of structures by understanding what can be expressed about the structures in first-order logic. Besides being an interesting subject in its own right, model theory has had major impacts on almost every other branch of mathematics. In this project, we focus on applications of model theory to operator algebras, that is, various subalgebras of the algebra of bounded operators on a Hilbert space that are closed under adjoint and are closed in various topologies. The union of model theory and operator algebras has already proven to be fruitful and we plan on continuing the emerging evolution of model-theoretic methods in operator algebras. We also plan to continue our work in using nonstandard analysis to solve questions in diverse areas of mathematics, including infinite-dimensional Lie theory, topological graph theory, and combinatorial number theory. Nonstandard analysis takes advantage of idealized elements to replace limiting processes and offers new insights into difficult problems.The study of operator algebras originally began as a rigorous mathematical formulation for studying various phenomena in quantum physics. A Hilbert space is a space consisting of vectors that can be added and multiplied by scalars and for which a notion of angle makes sense. An operator on a Hilbert space is a continuous transformation of the Hilbert space that respects the addition and scalar multiplication; operators can themselves be added and multiplied and there is also a notion of an adjoint of an operator, which in some sense is akin to taking a matrix and taking its transpose. An operator algebra is a collection of operators on a Hilbert space that is closed under addition, scalar multiplication and adjoint and is closed under taking limits in a suitable sense. Understanding the properties of various kinds of operator algebras and attempting to classify them has been an important venture in functional analysis for over half a century. In this project, we propose to continue the use of techniques from logic to study operator algebras and their model-theoretic properties, that is, the properties they possess that can be expressed in logical terms.
模型论是数理逻辑的一个分支,它通过理解一阶逻辑中结构的表达方式来研究结构类别。 除了本身是一个有趣的学科之外,模型理论还对数学的几乎所有其他分支产生了重大影响。 在这个项目中,我们重点关注模型理论在算子代数中的应用,即希尔伯特空间上有界算子代数的各种子代数,这些子代数在伴随下是闭的,并且在各种拓扑中也是闭的。 模型理论和算子代数的结合已经被证明是富有成效的,我们计划继续算子代数中模型理论方法的新兴发展。 我们还计划继续使用非标准分析来解决数学不同领域的问题,包括无限维李理论、拓扑图论和组合数论。 非标准分析利用理想化元素来代替限制过程,并为难题提供了新的见解。算子代数的研究最初是作为研究量子物理中各种现象的严格数学公式开始的。 希尔伯特空间是一个由向量组成的空间,这些向量可以与标量相加和相乘,并且角度的概念是有意义的。 希尔伯特空间上的算子是希尔伯特空间的连续变换,它遵循加法和标量乘法;运算符本身可以相加和相乘,并且还有一个运算符伴随的概念,在某种意义上类似于采用矩阵并对其转置。 算子代数是希尔伯特空间上的算子集合,该空间在加法、标量乘法和伴随下是封闭的,并且在适当意义上取极限时也是封闭的。 半个多世纪以来,了解各种算子代数的性质并尝试对它们进行分类一直是泛函分析中的一项重要事业。 在这个项目中,我们建议继续使用逻辑技术来研究算子代数及其模型理论属性,即它们拥有的可以用逻辑术语表达的属性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Isaac Goldbring其他文献
COMPUTABILITY AND THE CONNES EMBEDDING PROBLEM
可计算性和 CONNES 嵌入问题
- DOI:
10.1017/bsl.2016.5 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Isaac Goldbring;B. Hart - 通讯作者:
B. Hart
Existentially closed II₁ factors
存在闭 II₁ 因子
- DOI:
10.4064/fm126-12-2015 - 发表时间:
2016 - 期刊:
- 影响因子:0.6
- 作者:
I. Farah;Isaac Goldbring;B. Hart;David Sherman - 通讯作者:
David Sherman
Pseudofinite and Pseudocompact Metric Structures
伪有限和伪紧度量结构
- DOI:
10.1215/00294527-3132833 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Isaac Goldbring;Vinicius Cifú Lopes - 通讯作者:
Vinicius Cifú Lopes
Everettian Mechanics with Hyperfinitely Many Worlds
具有超有限多个世界的 Everettian 力学
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
J. Barrett;Isaac Goldbring - 通讯作者:
Isaac Goldbring
Isaac Goldbring的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Isaac Goldbring', 18)}}的其他基金
Model Theory, Quantum Complexity, and Embedding Problems in Operator Algebras
模型论、量子复杂性和算子代数中的嵌入问题
- 批准号:
2054477 - 财政年份:2021
- 资助金额:
$ 33.6万 - 项目类别:
Standard Grant
CAREER: Model Theory and Operator Algebras
职业:模型理论和算子代数
- 批准号:
1349399 - 财政年份:2014
- 资助金额:
$ 33.6万 - 项目类别:
Continuing Grant
相似国自然基金
高维结构约束的光场视频稀疏模型压缩理论与方法
- 批准号:62371278
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
脑组织白质的粘超弹性损伤本构模型理论及其应用研究
- 批准号:12302085
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
教育资源配置对住房市场的影响机制研究:理论模型、实证证据及福利效应
- 批准号:72374203
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
中国古代月亮运动理论的模型及其精度研究
- 批准号:12303069
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高维稳健隐私回归的优化模型理论与算法研究
- 批准号:12371322
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
Small Things First: Leveraging Implementation Science to Increase Access to Infant Directed Speech for ALL Infants in Neonatal Intensive Care Units
小事优先:利用实施科学增加新生儿重症监护病房所有婴儿获得婴儿定向语音的机会
- 批准号:
10570336 - 财政年份:2023
- 资助金额:
$ 33.6万 - 项目类别:
CAREER: Model theoretic classification theory, Fourier analysis, and hypergraph regularity
职业:模型理论分类理论、傅立叶分析和超图正则性
- 批准号:
2239737 - 财政年份:2023
- 资助金额:
$ 33.6万 - 项目类别:
Continuing Grant
The development of a technology-based information support intervention (iSupport) among patients with differentiated thyroid cancer post radioactive iodine therapy
针对放射性碘治疗后分化型甲状腺癌患者开发基于技术的信息支持干预 (iSupport)
- 批准号:
10581121 - 财政年份:2023
- 资助金额:
$ 33.6万 - 项目类别:
Improving Access to Alzheimer's disease and Related Dementias care services for Latinx individuals at Community Health Clinics. A multiphase mixed methods study.
改善社区健康诊所的拉丁裔个人获得阿尔茨海默病和相关痴呆症护理服务的机会。
- 批准号:
10429652 - 财政年份:2022
- 资助金额:
$ 33.6万 - 项目类别:
Using Symptom Network Models to Translate Theory to Clinical Applications
使用症状网络模型将理论转化为临床应用
- 批准号:
10387871 - 财政年份:2022
- 资助金额:
$ 33.6万 - 项目类别: