Characterization of Hydrodynamics and Behavior of Viscoelasticity at the Nanoscale

纳米尺度的流体动力学和粘弹性行为表征

基本信息

项目摘要

The ability to measure physical properties of materials at very small scales is key to advancing scientific research and technological progress. Measurements that occur at the nanoscale, where the physical dimensions involved are on the order of one billionth of a meter, are of particular importance. The atomic force microscope (AFM) is one of the primary tools for making quantitative measurements of material properties at the nanoscale. However, there exist many physical phenomena at the nanoscale that prevent accurate quantitative measurements from being made, especially in liquid environments. This project aims to understand and fully characterize two such phenomena: fluid forces that arise at the nanoscale when the AFM is operated in liquid environments (hydrodynamics) and the underlying principles that govern the behavior of the material being interrogated (viscoelasticity). This project will enable quantitative measurements of material properties at the nanoscale in liquid environments on a variety of inorganic and biological materials. This will enable new and cutting-edge research in areas such as medicine, biology, and materials engineering. In addition, the project's educational plan will develop a hands-on, interactive, and portable learning platform that will expose K-12, undergraduate, and graduate students to AFM and the scientific principles used in its operation. The educational plan will engender further interest and retention in the STEM fields. The primary objective of this project is to understand the effect that complex sample viscoelasticity and hydrodynamic forces at the nanoscale have on the resonant behavior of measurement systems by developing mathematical and numerical models that capture and quantify these phenomena. These effects can be addressed through the lens of contact resonance (CR) spectroscopy AFM. The CR spectroscopy system is an ideal measurement platform to understand these phenomena because it is well understood in the absence of these effects and has the ability to interrogate both the hydrodynamic and viscoelastic parameter spaces of interest. The focus of this project is on accurately predicting the three-dimensional fluid-structure interactions present in CR spectroscopy systems, establishing material models for CR spectroscopy to account for biological and non-classical viscoelastic materials, and experimentally validating the fluid-structure interaction and viscoelastic models. The success of the project will enable accurate contact resonance based quantitative nanomechanical characterization of biological materials in liquid environments, which in turn will facilitate research in several key areas such as study of biomaterials and bio-polymers with applications to the medical community, study of nanomechanical structural changes in osteoarthritic bones, and study of dentin and tooth enamel.
在极小尺度上测量材料物理特性的能力是推进科学研究和技术进步的关键。 在纳米尺度上进行的测量尤其重要,其中涉及的物理尺寸约为十亿分之一米。 原子力显微镜(AFM)是在纳米尺度上定量测量材料特性的主要工具之一。 然而,纳米尺度上存在许多物理现象,阻碍了精确的定量测量,特别是在液体环境中。 该项目旨在理解并充分表征两种这样的现象:当原子力显微镜在液体环境中运行时在纳米尺度上产生的流体力(流体动力学)以及控制被研究材料行为的基本原理(粘弹性)。 该项目将能够在液体环境中对各种无机和生物材料进行纳米级材料特性的定量测量。 这将使医学、生物学和材料工程等领域的新的尖端研究成为可能。 此外,该项目的教育计划将开发一个动手、互动和便携式学习平台,让 K-12、本科生和研究生接触 AFM 及其操作中使用的科学原理。 该教育计划将进一步激发人们对 STEM 领域的兴趣和保留率。 该项目的主要目标是通过开发捕获和量化这些现象的数学和数值模型,了解纳米级复杂样品粘弹性和流体动力对测量系统共振行为的影响。 这些影响可以通过接触共振 (CR) 光谱 AFM 的透镜来解决。 CR 光谱系统是理解这些现象的理想测量平台,因为它在没有这些效应的情况下可以很好地理解,并且能够询问感兴趣的流体动力学和粘弹性参数空间。 该项目的重点是准确预测 CR 光谱系统中存在的三维流固相互作用,建立 CR 光谱的材料模型以解释生物和非经典粘弹性材料,并通过实验验证流固相互作用和粘弹性模型。 该项目的成功将使液体环境中生物材料基于接触共振的精确定量纳米力学表征成为可能,这反过来又将促进几个关键领域的研究,例如生物材料和生物聚合物的研究及其在医学界的应用、纳米力学的研究骨关节炎骨骼的结构变化以及牙本质和牙釉质的研究。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Novel Plate-Like Sensor Utilizing Curvature-Based Stiffening for Nanometrology Applications
一种利用基于曲率的加固的新型板状传感器,用于纳米计量应用
Sensor Egregium—An Atomic Force Microscope Sensor for Continuously Variable Resonance Amplification
传感器 Egregium — 用于连续可变共振放大的原子力显微镜传感器
  • DOI:
    10.1115/1.4050274
  • 发表时间:
    2021-08-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Shihab;Tasmirul Jalil;Burak Gulsacan;M. Aureli;R. Tung
  • 通讯作者:
    R. Tung
A Plate-Like Sensor for the Identification of Sample Viscoelastic Properties Using Contact Resonance Atomic Force Microscopy
使用接触共振原子力显微镜识别样品粘弹性的板状传感器
  • DOI:
    10.1115/1.4049538
  • 发表时间:
    2021-07-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Aureli;R. Tung
  • 通讯作者:
    R. Tung
Contact Resonance Atomic Force Microscopy Using Long, Massive Tips
使用长而大的尖端的接触式共振原子力显微镜
  • DOI:
    10.3390/s19224990
  • 发表时间:
    2019-11-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tony Jaquez;M. Aureli;R. Tung
  • 通讯作者:
    R. Tung
Plate geometries for contact resonance atomic force microscopy: Modeling, optimization, and verification
  • DOI:
    10.1063/1.5038727
  • 发表时间:
    2018-07-03
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    M. Aureli;S. Ahsan;R. Shihab;R. Tung
  • 通讯作者:
    R. Tung
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ryan Tung其他文献

Ryan Tung的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ryan Tung', 18)}}的其他基金

Determination of the Key Parameters Causing Unexplained Dynamic Phenomena in High-Speed Atomic Force Microscopy
高速原子力显微镜中引起无法解释的动态现象的关键参数的确定
  • 批准号:
    1934772
  • 财政年份:
    2020
  • 资助金额:
    $ 33.22万
  • 项目类别:
    Standard Grant

相似国自然基金

流体粒子耦合模型弱解的流体动力学极限和大时间行为
  • 批准号:
    12171390
  • 批准年份:
    2021
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
快速大形变下高分子纳米复合材料的非线性流变行为研究
  • 批准号:
    21903053
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
活性流体强化气液宏观传质的介尺度行为及流体动力学效应
  • 批准号:
    51876030
  • 批准年份:
    2018
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
输运理论中的偏微分方程
  • 批准号:
    11871229
  • 批准年份:
    2018
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
对聚合物纳米复合材料非爱因斯坦行为的探索
  • 批准号:
    21803040
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

The Role of Hydrodynamics in the Behavior of Active Matter
流体动力学在活性物质行为中的作用
  • 批准号:
    1803662
  • 财政年份:
    2018
  • 资助金额:
    $ 33.22万
  • 项目类别:
    Standard Grant
Investigating the impact of hydrodynamics on the behavior of the endangered freshwater pearl mussel using field and laboratory approaches
使用现场和实验室方法研究流体动力学对濒临灭绝的淡水珍珠贻贝行为的影响
  • 批准号:
    2366620
  • 财政年份:
    2016
  • 资助金额:
    $ 33.22万
  • 项目类别:
    Studentship
Hydrodynamics, solids mixing and transport behavior of turbulent fluidized beds, high-density risers and dilute spouted beds
湍流流化床、高密度提升管和稀喷动床的流体动力学、固体混合和传输行为
  • 批准号:
    203143-2002
  • 财政年份:
    2005
  • 资助金额:
    $ 33.22万
  • 项目类别:
    Discovery Grants Program - Individual
Hydrodynamics, solids mixing and transport behavior of turbulent fluidized beds, high-density risers and dilute spouted beds
湍流流化床、高密度提升管和稀喷动床的流体动力学、固体混合和传输行为
  • 批准号:
    203143-2002
  • 财政年份:
    2005
  • 资助金额:
    $ 33.22万
  • 项目类别:
    Discovery Grants Program - Individual
Hydrodynamics, solids mixing and transport behavior of turbulent fluidized beds, high-density risers and dilute spouted beds
湍流流化床、高密度提升管和稀喷动床的流体动力学、固体混合和传输行为
  • 批准号:
    203143-2002
  • 财政年份:
    2004
  • 资助金额:
    $ 33.22万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了