RI: Medium: Collaborative Research: Incorporating Biologically-Motivated Circuit Motifs into Large-Scale Deep Neural Network Models of the Brain

RI:中:协作研究:将生物驱动的电路基序纳入大脑的大规模深度神经网络模型

基本信息

  • 批准号:
    1704938
  • 负责人:
  • 金额:
    $ 52.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-10-01 至 2021-09-30
  • 项目状态:
    已结题

项目摘要

This project studies the effects of incorporating, into deep neural networks for visual processing, several heretofore unincorporated features of biological visual cortical circuits. Deep neural networks are artificial circuits loosely inspired by the brain's cerebral cortex. Their abilities to solve complex problems, such as recognizing objects in visual scenes, have revolutionized artificial intelligence and machine learning in recent years. The hierarchy of layers in a deep network trained for visual object recognition also provides the best existing models of the hierarchy of areas in the visual cortex implicated in object recognition (the "ventral stream"). This project seeks to understand whether and how incorporating additional features of brain circuits may (1) improve machine learning performance, particularly on tasks that are more challenging than those typically studied; and (2) yield improved models of visual cortex. Improving the performance of deep networks would yield great benefits across wide swaths of society and industry that are impacted by advances in artificial intelligence. Improved models of visual cortex will advance understanding of cortical function, which may lead to significant further benefits for understanding normal mental functioning and perception and their potential enhancement, as well as mental illness and perceptual and cognitive deficits. Deep networks currently achieve their success using almost purely feedforward processing. Yet the visual cortical ventral stream that helped inspire deep networks also uses massive recurrent processing within each area as well as feedback connections from higher areas to lower areas and "bypass" connections from lower areas to areas multiple steps higher in the hierarchy. Deep networks also use "neurons" that can either excite or inhibit different neurons that they project to, whereas biological neurons are exclusively excitatory or inhibitory. This project will incorporate feedback and bypass connections into deep networks, as well as local recurrent processing in networks of separate excitatory and inhibitory neurons. Recent work by the investigators has shown how local recurrent processing explains a number of nonlinear visual cortical operations often summarized as "normalization." Simple forms of normalization currently used in deep networks maintain activities in an appropriate dynamic range, but the biological forms of normalization involve interactions between different stimulus features and locations in determining neural responses, which may have important computational roles e.g. in parsing visual scenes. The performance of deep networks incorporating these features will be assayed on a variety of visual tasks and as models of ventral stream neural data and human psychophysical data, and compared to performance of existing deep net models.
该项目研究了纳入深层神经网络进行视觉处理的效果,这些源自生物视觉皮层电路的几种迄今未合并的特征。深度神经网络是受大脑大脑皮质的启发的人造电路。他们解决复杂问题的能力,例如在视觉场景中识别对象,近年来彻底改变了人工智能和机器学习。在训练视觉对象识别的深层网络中,图层的层次结构还提供了与对象识别有关的视觉皮层区域层次结构的最佳现有模型(“腹流”)。该项目试图了解大脑电路的其他功能以及如何(1)提高机器学习绩效,尤其是在比通常研究的任务更具挑战性的任务上; (2)产生改进的视觉皮层模型。提高深层网络的绩效将在人工智能进步影响的社会和行业的广泛范围内带来巨大的好处。改进的视觉皮层模型将提高人们对皮质功能的理解,这可能会带来明显的进一步好处,以了解正常的心理功能和感知及其潜在的增强,以及精神疾病,感知和认知缺陷。深层网络目前使用几乎纯粹的前馈处理实现了成功。然而,有助于激发深层网络的视觉皮质腹流也使用了每个区域内的大量经常性处理,以及从较高区域到较低区域的反馈连接,以及从较低区域到层次结构中较高的区域的“旁路”连接。深网还使用“神经元”可以激发或抑制其投影到的不同神经元,而生物神经元仅兴奋或抑制性。该项目将将反馈和旁路连接纳入深网,以及在单独的兴奋性和抑制性神经元网络中的局部反复处理。研究人员最近的工作表明,局部经常性处理如何解释了许多非线性视觉皮质操作通常总结为“归一化”。当前在深网中使用的简单形式的正常化形式将活动保持在适当的动态范围内,但是标准化的生物学形式涉及不同刺激特征和位置之间的相互作用,以确定神经反应,这可能具有重要的计算角色,例如在解析视觉场景中。结合这些功能的深网的性能将在各种视觉任务以及腹溪流神经数据和人体心理物理数据的模型上进行测定,并将其与现有深网模型的性能进行比较。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Do Biologically-Realistic Recurrent Architectures Produce Biologically-Realistic Models?
生物学真实的循环架构是否能产生生物学真实的模型?
A deep learning framework for neuroscience
  • DOI:
    10.1038/s41593-019-0520-2
  • 发表时间:
    2019-11-01
  • 期刊:
  • 影响因子:
    25
  • 作者:
    Richards, Blake A.;Lillicrap, Timothy P.;Kording, Konrad P.
  • 通讯作者:
    Kording, Konrad P.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kenneth Miller其他文献

Primary Pulmonary Leiomyosarcoma With Cardiac Metastases
  • DOI:
    10.1378/chest.1995279
  • 发表时间:
    2014-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Nagendra Madisi;Kenneth Miller
  • 通讯作者:
    Kenneth Miller
911 Emergency Medical Services and Re-Triage to Level I Trauma Centers
  • DOI:
    10.1016/j.jamcollsurg.2017.09.013
  • 发表时间:
    2018-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Eric Kuncir;Dean Spencer;Kelly Feldman;Cristobal Barrios;Kenneth Miller;Stephanie Lush;Matthew Dolich;Michael Lekawa
  • 通讯作者:
    Michael Lekawa
Setting or Patient Care Needs: Which Defines Advanced Practice Registered Nurse Scope of Practice?
  • DOI:
    10.1016/j.nurpra.2019.03.004
  • 发表时间:
    2019-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Kenneth Miller
  • 通讯作者:
    Kenneth Miller
Neonatal Urinary Ascites in a Girl with a Solitary Obstructed Kidney
  • DOI:
    10.1016/s0022-5347(17)55070-3
  • 发表时间:
    1981-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Kenneth Miller;Raghbir Benawra;Ramiro Prudencio;Henry Mangurten
  • 通讯作者:
    Henry Mangurten
A Proposed Vehicle For Delivering A Mechanical Engineering Systems Laboratory Experience
拟议的提供机械工程系统实验室体验的工具
  • DOI:
    10.18260/1-2--7372
  • 发表时间:
    1998
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Lyons;Jeffrey Morehouse;D. N. Rocheleau;E. Young;Kenneth Miller
  • 通讯作者:
    Kenneth Miller

Kenneth Miller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kenneth Miller', 18)}}的其他基金

Collaborative Research: RAPID: Opportunity to acquire continuous, high-resolution geochemical proxies for paleoclimate, paleoenvironment, and modern hydrogeology from CPCP cores
合作研究:RAPID:从 CPCP 核心获取古气候、古环境和现代水文地质的连续、高分辨率地球化学代理的机会
  • 批准号:
    2227246
  • 财政年份:
    2022
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a 400 MHz Nuclear Magnetic Resonance (NMR) Spectrometer
MRI:获取 400 MHz 核磁共振 (NMR) 波谱仪
  • 批准号:
    2017945
  • 财政年份:
    2020
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Standard Grant
COLLABORATIVE RESEARCH: Tracing Greenhouse to Icehouse Climate Evolution Along the Western North Atlantic Meridional and Paleodepth Transect
合作研究:追踪北大西洋西部经向和古深度横断面从温室到冰库的气候演变
  • 批准号:
    1657013
  • 财政年份:
    2017
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Continuing Grant
Renewal of Curation of ODP Legs 150X and 174AX cores: The Rutgers Core Repository
更新 ODP Legs 150X 和 174AX 核心的管理:罗格斯核心存储库
  • 批准号:
    1463759
  • 财政年份:
    2015
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Continuing Grant
Renewal of Curation of ODP Legs 150X and 174AX cores: The Rutgers Core Repository
更新 ODP Legs 150X 和 174AX 核心的管理:罗格斯核心存储库
  • 批准号:
    1154379
  • 财政年份:
    2012
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Continuing Grant
Pliocene peak sea level and warmth: Integration of a Virginia corehole array and deep-sea isotope and trace metal records
上新世峰值海平面和温暖:弗吉尼亚岩心孔阵列与深海同位素和痕量金属记录的整合
  • 批准号:
    1052257
  • 财政年份:
    2012
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Standard Grant
A Plan to Prepare STEM Teachers for Rural Montana
为蒙大拿州农村地区培养 STEM 教师的计划
  • 批准号:
    1136274
  • 财政年份:
    2011
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Standard Grant
Drilling The Cretaceous/Paleogene Boundary in NJ: Testing the Relationship of Geochemical Anomalies to Event Beds
新泽西州白垩纪/古近纪边界钻探:测试地球化学异常与事件层的关系
  • 批准号:
    0744399
  • 财政年份:
    2008
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Continuing Grant
Archiving and Advancing Core Curation and Database Management of ODP Legs 150X and 174AX cores: The Rutgers U.S. Atlantic Margin Core Repository
归档和推进 ODP Legs 150X 和 174AX 核心的核心管理和数据库管理:罗格斯美国大西洋边缘核心存储库
  • 批准号:
    0751757
  • 财政年份:
    2008
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Post-Impact Studies of the Chesapeake Bay Impact Structure: Quantifying Continental Margin Evolution
合作研究:切萨皮克湾撞击结构的撞击后研究:量化大陆边缘演变
  • 批准号:
    0606693
  • 财政年份:
    2006
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Standard Grant

相似国自然基金

复合低维拓扑材料中等离激元增强光学响应的研究
  • 批准号:
    12374288
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于管理市场和干预分工视角的消失中等企业:特征事实、内在机制和优化路径
  • 批准号:
    72374217
  • 批准年份:
    2023
  • 资助金额:
    41.00 万元
  • 项目类别:
    面上项目
托卡马克偏滤器中等离子体的多尺度算法与数值模拟研究
  • 批准号:
    12371432
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
中等质量黑洞附近的暗物质分布及其IMRI系统引力波回波探测
  • 批准号:
    12365008
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
  • 批准号:
    42305004
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312841
  • 财政年份:
    2023
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312842
  • 财政年份:
    2023
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313151
  • 财政年份:
    2023
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312840
  • 财政年份:
    2023
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313149
  • 财政年份:
    2023
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了