NeTS: Medium: Collaborative Research: Big Data Enabled Wireless Networking: A Deep Learning Approach
NeTS:媒介:协作研究:大数据支持的无线网络:深度学习方法
基本信息
- 批准号:1704662
- 负责人:
- 金额:$ 70万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-15 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Wireless networks are becoming larger and more complicated, generating a huge amount of runtime statistics data (such as traffic load, resource usages, etc.) every second. Instead of treating big data in wireless networks as an unwanted burden, we aim to leverage them as a great opportunity for better understanding user demands and system capabilities such that we can optimize resource allocation to better serve mobile users. In addition, Cloud Radio Access Networks (C-RANs) have become a key enabling technology for the next generation wireless communication systems. Their centralized architecture makes it easy to collect and analyze various runtime system data. This project aims to exploit how the powerful new machine learning techniques, including Deep Learning (DL) and Deep Reinforcement Learning (DRL), can be leveraged to grasp the exciting opportunity provided by big data to enable future wireless networks to better serve their users. The proposed research is expected to significantly improve resource utilization of wireless networks and reduce their operational costs (such as power consumption), which can substantially benefit wireless network carriers and mobile users, and more importantly, is good for global environment. Beyond wireless networking, the proposed DL models and algorithms may find its applications in a large variety of domains, including video content analysis, user behavior study, etc. Moreover, the proposed project is expected to advance public understanding of the emerging 5G wireless communications, DL and DRL via publications, seminars and workshops, and international and industrial collaborations. The objective of this project is to develop a novel deep learning approach to enable efficient design and operations of future wireless networks with big data. Specifically, we will propose DL models and algorithms for spatiotemporal analysis and prediction of key system parameters, which can provide accurate and useful input information for existing resource allocation algorithms to better operate a wireless network. Moreover, we will develop a novel DRL-based control framework for a wireless network to efficiently allocate its resources by jointly learning the system environment and making decisions under the guidance of a powerful deep neural network. To achieve the above object, the project is organized into three cohesive thrusts: Thrust 1 Deep Learning based Modeling and Prediction; Thrust 2 Deep Reinforcement Learning based Dynamic Resource Allocation; and Thrust 3 Validation and Performance Evaluation.
无线网络越来越大,越来越复杂,每秒都会生成大量的运行时统计数据(例如流量负载,资源使用等)。我们的目的不是将无线网络中的大数据视为不必要的负担,而是利用它们作为更好地了解用户需求和系统功能的绝佳机会,以便我们可以优化资源分配以更好地服务于移动用户。此外,云无线电访问网络(C-RAN)已成为下一代无线通信系统的关键启用技术。他们的集中式体系结构使收集和分析各种运行时系统数据变得容易。该项目旨在利用强大的新机器学习技术(包括深度学习(DL)和深度强化学习(DRL))如何利用,以掌握大数据提供的激动人心的机会,以使未来的无线网络能够更好地为用户服务。预计拟议的研究将显着改善无线网络的资源利用,并降低其运营成本(例如功耗),这些成本可以实质上使无线网络运营商和移动用户受益,更重要的是,对全球环境有益。除了无线网络之外,提议的DL模型和算法可能会在各种领域中找到其应用程序,包括视频内容分析,用户行为研究等。此外,预计拟议的项目有望促进公众对新兴的5G无线通信,通过出版物和研讨会,以及国际和工业协作的DL和DRL的了解。该项目的目的是开发一种新颖的深度学习方法,以实现具有大数据的未来无线网络的有效设计和操作。具体而言,我们将提出用于时空分析和关键系统参数预测的DL模型和算法,这些参数可以为现有资源分配算法提供准确且有用的输入信息,以更好地操作无线网络。此外,我们将为无线网络开发一个新型的基于DRL的控制框架,以通过共同学习系统环境并在强大的深层神经网络的指导下做出决策来有效地分配其资源。为了实现上述对象,该项目被组织成三个凝聚力的推力:推力1基于深度学习的建模和预测;推力2基于深入学习的基于动态资源分配;并推力3验证和绩效评估。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
EXTRA: An Experience-driven Control Framework for Distributed Stream Data Processing with a Variable Number of Threads
EXTRA:用于具有可变线程数的分布式流数据处理的体验驱动控制框架
- DOI:10.1109/iwqos52092.2021.9521325
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Li, Teng;Xu, Zhiyuan;Tang, Jian;Wu, Kun;Wang, Yanzhi
- 通讯作者:Wang, Yanzhi
PnP-DRL: A Plug-and-Play Deep Reinforcement Learning Approach for Experience-Driven Networking
- DOI:10.1109/jsac.2021.3087270
- 发表时间:2021-08
- 期刊:
- 影响因子:16.4
- 作者:Zhiyuan Xu;Kun Wu;Weiyi Zhang;Jian Tang;Yanzhi Wang;G. Xue
- 通讯作者:Zhiyuan Xu;Kun Wu;Weiyi Zhang;Jian Tang;Yanzhi Wang;G. Xue
Experience-driven Networking: A Deep Reinforcement Learning based Approach
- DOI:10.1109/infocom.2018.8485853
- 发表时间:2018-01
- 期刊:
- 影响因子:0
- 作者:Zhiyuan Xu;Jian Tang;Jingsong Meng;Weiyi Zhang;Yanzhi Wang;C. Liu;Dejun Yang
- 通讯作者:Zhiyuan Xu;Jian Tang;Jingsong Meng;Weiyi Zhang;Yanzhi Wang;C. Liu;Dejun Yang
Towards Ultra-High Performance and Energy Efficiency of Deep Learning Systems: An Algorithm-Hardware Co-Optimization Framework
- DOI:10.1609/aaai.v32i1.11653
- 发表时间:2018-02
- 期刊:
- 影响因子:0
- 作者:Yanzhi Wang;Caiwen Ding;Zhe Li;Geng Yuan;Siyu Liao;Xiaolong Ma;Bo Yuan;Xuehai Qian;Jian Tang;Qinru Qiu;X. Lin
- 通讯作者:Yanzhi Wang;Caiwen Ding;Zhe Li;Geng Yuan;Siyu Liao;Xiaolong Ma;Bo Yuan;Xuehai Qian;Jian Tang;Qinru Qiu;X. Lin
A Deep Recurrent Neural Network Based Predictive Control Framework for Reliable Distributed Stream Data Processing
基于深度循环神经网络的可靠分布式流数据处理的预测控制框架
- DOI:10.1109/ipdps.2019.00036
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Xu, Jielong Xu;Tang, Jian;Xu, Zhiyuan Xu;Yin, Chengxiang;Kwiat, Kevin;Kamhoua, Charles
- 通讯作者:Kamhoua, Charles
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jian Tang其他文献
Orthogonal Least Squares Based Incremental Echo State Networks for Nonlinear Time Series Data Analysis
基于正交最小二乘的增量回波状态网络用于非线性时间序列数据分析
- DOI:
10.1109/access.2019.2960606 - 发表时间:
2019-12 - 期刊:
- 影响因子:3.9
- 作者:
Qian Zhang;Xiaojie Zhou;Jian Tang - 通讯作者:
Jian Tang
PAHs and their hydroxylated metabolites in the human fingernails from e-waste dismantlers: Implications for human non-invasive biomonitoring and exposure
电子废物拆解者的人类指甲中的多环芳烃及其羟基化代谢物:对人类非侵入性生物监测和暴露的影响
- DOI:
10.1016/j.envpol.2021.117059 - 发表时间:
2021 - 期刊:
- 影响因子:8.9
- 作者:
Shengtao Ma;Zihuan Zeng;Meiqing Lin;Jian Tang;Yan Yang;Yingxin Yu;Guiying Li;Taicheng An - 通讯作者:
Taicheng An
Fourier transform infrared spectroscopy of the ν3 hot band of NO3
NO3 ν3 热带的傅里叶变换红外光谱
- DOI:
10.1016/j.jms.2011.04.003 - 发表时间:
2011 - 期刊:
- 影响因子:1.4
- 作者:
K. Kawaguchi;N. Shimizu;R. Fujimori;Jian Tang;T. Ishiwata;I. Tanaka - 通讯作者:
I. Tanaka
Research on terahertz photonic crystal fiber characteristics with high birefringence
高双折射太赫兹光子晶体光纤特性研究
- DOI:
10.1016/j.ijleo.2013.06.074 - 发表时间:
2014 - 期刊:
- 影响因子:3.1
- 作者:
Qian He;Jian Tang;Deng Luo;Ming Chen;Hui Chen;Haiou Li;Mingsong Chen;Zhiyi He;Ning He - 通讯作者:
Ning He
The effects of radon daughter α-particle irradiation in K1 and xrs-5 CHO cell lines
氡子体 α 粒子照射对 K1 和 xrs-5 CHO 细胞系的影响
- DOI:
10.1016/0027-5107(91)90089-7 - 发表时间:
1991 - 期刊:
- 影响因子:0
- 作者:
J. Shadley;J. Whitlock;J. Rotmensch;R. Atcher;Jian Tang;J. Schwartz - 通讯作者:
J. Schwartz
Jian Tang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jian Tang', 18)}}的其他基金
EARS: CogCloud: A Spectrum-Efficient and Green Cloud Platform for Radio-As-A-Service Over a Cognitive Radio Substrate
EARS:CogCloud:基于认知无线电底层的无线电即服务的频谱效率高的绿色云平台
- 批准号:
1443966 - 财政年份:2015
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
NeTS: Small: Enabling High-Quality Mobile Crowdsourcing with Lifestyle-aware and Energy-efficient Control
NetS:小型:通过生活方式感知和节能控制实现高质量移动众包
- 批准号:
1525920 - 财政年份:2015
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
NeTS: Small: Collaborative Research: A Green and Incentive Platform for Mobile Phone Sensing
NetS:小型:协作研究:手机传感的绿色激励平台
- 批准号:
1218203 - 财政年份:2012
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
CAREER: Leveraging Smart Antennas for WiMAX-based Mesh Networking
职业:利用智能天线实现基于 WiMAX 的网状网络
- 批准号:
1113398 - 财政年份:2010
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
CAREER: Leveraging Smart Antennas for WiMAX-based Mesh Networking
职业:利用智能天线实现基于 WiMAX 的网状网络
- 批准号:
0845776 - 财政年份:2009
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
NeTS-WN: Collaborative Research: Cross-layer Optimization for Dynamic Spectrum Access Wireless Mesh Networks
NeTS-WN:协作研究:动态频谱接入无线网状网络的跨层优化
- 批准号:
0721880 - 财政年份:2007
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
相似国自然基金
复合低维拓扑材料中等离激元增强光学响应的研究
- 批准号:12374288
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于管理市场和干预分工视角的消失中等企业:特征事实、内在机制和优化路径
- 批准号:72374217
- 批准年份:2023
- 资助金额:41.00 万元
- 项目类别:面上项目
托卡马克偏滤器中等离子体的多尺度算法与数值模拟研究
- 批准号:12371432
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
中等质量黑洞附近的暗物质分布及其IMRI系统引力波回波探测
- 批准号:12365008
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
- 批准号:42305004
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: NeTS: Medium: EdgeRIC: Empowering Real-time Intelligent Control and Optimization for NextG Cellular Radio Access Networks
合作研究:NeTS:媒介:EdgeRIC:为下一代蜂窝无线接入网络提供实时智能控制和优化
- 批准号:
2312978 - 财政年份:2023
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: Towards High-Performing LoRa with Embedded Intelligence on the Edge
协作研究:NeTS:中:利用边缘嵌入式智能实现高性能 LoRa
- 批准号:
2312676 - 财政年份:2023
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: Black-box Optimization of White-box Networks: Online Learning for Autonomous Resource Management in NextG Wireless Networks
合作研究:NeTS:中:白盒网络的黑盒优化:下一代无线网络中自主资源管理的在线学习
- 批准号:
2312835 - 财政年份:2023
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: An Integrated Multi-Time Scale Approach to High-Performance, Intelligent, and Secure O-RAN based NextG
合作研究:NeTS:Medium:基于 NextG 的高性能、智能和安全 O-RAN 的集成多时间尺度方法
- 批准号:
2312447 - 财政年份:2023
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: Large Scale Analysis of Configurations and Management Practices in the Domain Name System
合作研究:NetS:中型:域名系统配置和管理实践的大规模分析
- 批准号:
2312711 - 财政年份:2023
- 资助金额:
$ 70万 - 项目类别:
Standard Grant