Hydrodynamic considerations for multiple fin interactions in rapid maneuvers
快速机动中多鳍相互作用的流体动力学考虑
基本信息
- 批准号:1703978
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Jumping by any organism requires high bursts of power and muscular coordination. Aquatic water-to-air jumpers must produce enough thrust to account for the drastic drop in fluid density, and thus force-producing ability, when exiting the water. Jumps represent short burst maneuvers in a restricted space (a single body length) with finite duration (until the body has exited the water). This work will investigate multi-fin interactions during short distance, confined space, rapid jumping and swimming maneuvers in archer fish. The archer fish is a unique fish species that uses multiple fins in concert to rapidly jump out of the water from a stationary aiming position. The analysis of jumping behaviors, in a controlled laboratory environment, and comparison with in-water maneuvers, can yield valuable hydrodynamic insight into multi-fin interactions for a range of rapid swimming behaviors. Coordinated fin motions are thought to enhance thrust, increase stability and aid in aiming during rapid maneuvers. Understanding complex multi-fin swimming strategies can help inform bio-inspired swimming robot designs ? where multiple fins could be employed to increase vehicle maneuverability in tight spaces or allow for controlled water-exit maneuvers. Synergistic multi-propulsor relationships identified herein could be paradigm-shifting for the design of future bioinspired aquatic and aerial-aquatic vehicles. Several key hypotheses will be considered: (1) tail kinematics during archer fish jumping are tuned for specific jump heights; (2) secondary fins significantly enhance jump thrust and body stability during rapid maneuvers; (3) jumping is an energetically viable prey capture strategy in competitive environments. High-speed imaging of fin motions and fluid flows will be used to develop a hydrodynamic model for the relationship between thrust production during a jump and maximum animal jump height, which is a controllable performance variable in the laboratory. Synthetic aperture particle image velocimetry, a quantitative three-dimensional imaging technique for flow field velocimetry, will measure the near body velocity fields. Archer fish are a model fish species to investigate, as they use multiple fins in concert to rapidly jump out of the water without any upwards velocity at jump initiation. The archer fish jump allows us to look at propulsive forces and momentum generated by the fish, as well as the hydrodynamic energetics ? specifically the kinetic energy required to reach the final jump height (i.e. potential energy) ? to better understand the unexplored paradigm of sea-to-air exit. The unique morphology of the archer fish, with larger aft fins (dorsal and anal fins) just in front of the caudal tail, potentially adds both to the overall propulsive efficiency and thrust production. Jump maneuvers and in-water maneuvers can be compared for further understanding of the overarching role of multiple fin wake interactions in rapid and unsteady swimming behaviors. The characterization of fin-fin interactions during rapid burst jumping helps the organismal and evolutionary biology communities better understand multi-fin function in fish swimming. The proposed STEM outreach activities engage students in fluid physics and bioinspired design, through programming and hands-on experimental data processing; these activities are scalable and portable to the larger K-12 STEM community. Results of the project will be disseminated in peer-reviewed journals and at conferences in both the fluid dynamic and organismal biology communities.
任何生物都需要高爆发的力量和肌肉协调。水流到空气跳动器必须产生足够的推力,以说明流体密度的急剧下降,从而在退出水时产生力量。跳跃代表有限持续时间的限制空间(单个身体长度)中的短爆发操作(直到身体退出水)。这项工作将在短距离内调查多鳍互动,狭窄的空间,快速跳跃和弓箭鱼的游泳动作。弓箭鱼是一种独特的鱼类,它使用多个鳍的伴奏来从固定的瞄准位置迅速跳出水。在受控的实验室环境中,对跳跃行为的分析以及与水内操纵的比较,可以为多种快速游泳行为而对多鳍相互作用产生有价值的流体动力学见解。人们认为协调的鳍动作可以增强推力,提高稳定性并在快速操纵过程中瞄准。了解复杂的多鳍游泳策略可以帮助您为生物启发的游泳机器人设计吗?可以使用多个鳍来增加狭窄空间中的车辆可操作性或允许受控的水远期操作。 在本文中确定的协同多通行关系可能是用于设计未来生物启发的水生和空中水流车辆的范式。将考虑几个关键的假设:(1)弓箭鱼跳动期间的尾部运动学用于特定的跳高高度; (2)次要鳍在快速操纵过程中显着增强了跳跃推力和身体稳定性; (3)在竞争环境中,跳跃是一种能量可行的猎物捕获策略。鳍动作和流体流的高速成像将用于开发一个流体动力模型,以在跳跃过程中推力产生与最大动物跳跃高度之间的关系,这是实验室中可控性能变量。合成孔径粒子图像速度法是一种用于流场速度计的定量三维成像技术,将测量近体速度场。弓箭鱼是一种用于调查的模型鱼类,因为它们在跳跃开始时使用了多个鳍片来迅速跳出水,而没有任何向上的速度。弓箭鱼的跳跃使我们能够看一下鱼产生的推进力和动力,以及流体动力学的能量吗?特别是达到最终跳跃高度(即势能)所需的动能?更好地理解尚未开发的海对空气出口范式。弓箭鱼的独特形态,在尾尾的前面有较大的船尾鳍(背鳍)(背鳍),可能会增加整体推进效率和推力产生。可以比较跳跃演习和水中演习,以进一步了解快速和不稳定的游泳行为中多个鳍唤醒相互作用的总体作用。快速爆发过程中Fin-FIN相互作用的表征有助于有机和进化生物学群落更好地了解鱼游泳中的多鳍功能。拟议的STEM外展活动通过编程和动手实验数据处理使学生参与流体物理和生物启发的设计。这些活动是可扩展的,可用于较大的K-12 STEM社区。该项目的结果将在经过同行评审的期刊以及流体动态和生物生物学群落的会议上传播。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multi-camera volumetric PIV for the study of jumping fish
- DOI:10.1007/s00348-017-2468-x
- 发表时间:2017
- 期刊:
- 影响因子:2.4
- 作者:Leah Mendelson;A. Techet
- 通讯作者:Leah Mendelson;A. Techet
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexandra Techet其他文献
Alexandra Techet的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexandra Techet', 18)}}的其他基金
OCEANS 2006 Student Poster Program and Travel Funding
OCEANS 2006 学生海报计划和旅行资助
- 批准号:
0631029 - 财政年份:2006
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
“新零售”下考虑行为因素的供应链库存共享优化策略研究
- 批准号:72371061
- 批准年份:2023
- 资助金额:41.00 万元
- 项目类别:面上项目
考虑矿料因素的混合料中SBS改性沥青老化机理原位研究
- 批准号:52308469
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
考虑多因素影响预测精度的永磁同步电机模型预测控制研究
- 批准号:52377067
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
考虑参数激励的高速列车自激振动系统在非定常气动载荷等多种因素作用下的动力学响应研究
- 批准号:12372051
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
考虑三类风险因素的最优合约设计:连续时间委托代理模型拓展研究
- 批准号:12301599
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
"Repeated Measurement Designs: Multiple Objectives, Response adaptive, and cost effective considerations"
“重复测量设计:多重目标、响应自适应和成本效益考虑”
- 批准号:
200129-2012 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
"Repeated Measurement Designs: Multiple Objectives, Response adaptive, and cost effective considerations"
“重复测量设计:多重目标、响应自适应和成本效益考虑”
- 批准号:
200129-2012 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
"Repeated Measurement Designs: Multiple Objectives, Response adaptive, and cost effective considerations"
“重复测量设计:多重目标、响应自适应和成本效益考虑”
- 批准号:
200129-2012 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
"Repeated Measurement Designs: Multiple Objectives, Response adaptive, and cost effective considerations"
“重复测量设计:多重目标、响应自适应和成本效益考虑”
- 批准号:
200129-2012 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
"Repeated Measurement Designs: Multiple Objectives, Response adaptive, and cost effective considerations"
“重复测量设计:多重目标、响应自适应和成本效益考虑”
- 批准号:
200129-2012 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual