Langlands Correspondences and Motivic L-Functions
朗兰兹对应和动机 L 函数
基本信息
- 批准号:1701651
- 负责人:
- 金额:$ 20.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The study of the abstract properties of numbers and their relations has appeared at an early stage in the history of every civilization, and reflection on the problems of number theory is consistently found at the root of most of the ideas that characterize contemporary life, from timekeeping, to the symmetry concepts of modern physics, to the logic of computers. Numbers can be studied in two different ways that are nearly independent: they can be used for measurement and they can be used to do arithmetic. The interaction between these two properties has always been the basis of number theory. The second half of the twentieth century saw the formulation of several ambitious research programs that aimed at obtaining a systematic understanding of these interactions by studying numbers and their relations with the help of symmetry. The branch of mathematics concerned with their geometric symmetries is called arithmetic geometry; the branch concerned with their dynamical symmetries is called automorphic forms. The Langlands program aims to unify these two branches by showing how each kind of symmetry encodes the other. Contemporary theoretical physics has introduced the concept of higher order symmetries, based on new notions of space that themselves owe a great deal to earlier developments in number theory; more recently, higher order symmetries have been of increasing importance in the Langlands program. This project explores the role of higher order symmetries in connection with several specific questions in the Langlands program, with the ultimate aim of contributing to the understanding of solutions of equations in whole numbers.The project is a contribution to the arithmetic theory of automorphic forms, in the setting of the Langlands program, with special attention to the arithmetic of motives and their associated Galois representations, directly or by application of congruence methods. The specific goals of the project are the study of the local Langlands parametrizations for general groups, using trace formula methods; the proof of Deligne's conjecture on special values of L-functions, especially tensor product L-functions; the verification of Venkatesh's conjecture on derived Hecke algebras for modular forms of weight 1, using an unexpected relation with p-adic L-functions; and the development of a character theory for mod p representations of p-adic groups. The methods involved in the present project combine standard techniques from arithmetic geometry and automorphic forms, an approach to cohomological automorphic forms based on differential geometry and representation theory, categorical representation theory, as well as new methods.
对数字及其关系的抽象属性的研究已经出现在每个文明历史的早期阶段,并且对数字理论问题的反思始终是在大多数表征当代生活的思想的根源上,从定时式到现代物理学的对称性概念,再到计算机的逻辑。 可以以几乎独立的两种不同方式研究数字:它们可用于测量,并且可以用于进行算术。 这两个属性之间的相互作用一直是数字理论的基础。 二十世纪下半叶看到了一些雄心勃勃的研究计划的制定,旨在通过对对称性的帮助研究数字及其关系来系统地了解这些相互作用。 与它们的几何对称性有关的数学分支称为算术几何。与它们的动态对称性有关的分支称为自动形式。 Langlands计划旨在通过展示每种对称性如何编码对方来统一这两个分支。 当代理论物理学介绍了高级对称性的概念,基于空间的新概念,这些概念本身归功于数量理论的早期发展。最近,在兰兰兹计划中,高级对称性的重要性越来越重要。 This project explores the role of higher order symmetries in connection with several specific questions in the Langlands program, with the ultimate aim of contributing to the understanding of solutions of equations in whole numbers.The project is a contribution to the arithmetic theory of automorphic forms, in the setting of the Langlands program, with special attention to the arithmetic of motives and their associated Galois representations, directly or by application of congruence methods. 该项目的具体目标是使用痕量公式方法研究一般组的局部兰兰群岛参数。 Deligne对L功能的特殊值的猜想证明,尤其是张量产品L功能;使用与P-Adic L功能的意外关系,对Venkatesh在衍生的Hecke代数中的猜想验证;以及针对P-ADIC群体的Mod P表示的性格理论的发展。 本项目所涉及的方法结合了算术几何形式和自动形式的标准技术,这是一种基于差异几何学和表示理论,分类代表理论以及新方法的共同体自体形式的方法。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
$\hat{G}$-local systems on smooth projective curves are potentially automorphic
- DOI:10.4310/acta.2019.v223.n1.a1
- 发表时间:2016-09
- 期刊:
- 影响因子:3.7
- 作者:Gebhard Bockle;M. Harris;Chandrashekhar B. Khare;J. Thorne
- 通讯作者:Gebhard Bockle;M. Harris;Chandrashekhar B. Khare;J. Thorne
Minimal modularity lifting for nonregular symplectic representations
非正则辛表示的最小模块化提升
- DOI:10.1215/00127094-2019-0044
- 发表时间:2020
- 期刊:
- 影响因子:2.5
- 作者:Calegari, Frank;Geraghty, David
- 通讯作者:Geraghty, David
The Derived Hecke Algebra for Dihedral Weight One Forms
二面体权重一式的导出赫克代数
- DOI:10.1307/mmj/20217221
- 发表时间:2022
- 期刊:
- 影响因子:0.9
- 作者:Darmon, Henri;Harris, Michael;Rotger, Victor;Venkatesh, Akshay
- 通讯作者:Venkatesh, Akshay
Chern classes of automorphic vector bundles, II
自守向量丛的陈氏类,II
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Esnault, H.;Harris, M.
- 通讯作者:Harris, M.
p-ADIC L-FUNCTIONS FOR UNITARY GROUPS
酉群的 p-ADIC L 函数
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Eischen, Ellen;Harris, Michael;Li, Jian-Shu;Skinner, Christopher
- 通讯作者:Skinner, Christopher
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Harris其他文献
A QUALITATIVE STUDY OF A RURAL COMMUNITY COLLEGE WORKFORCE DEVELOPMENT CUSTOMIZED TRAINING PROGRAM
农村社区学院劳动力发展定制培训项目的定性研究
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Nathaniel J. Bray;B. Dyer;D. E. Hardy;Michael Harris;Stephen Katsinas - 通讯作者:
Stephen Katsinas
A note on trilinear forms for reducible representations and Beilinson’s conjectures
关于可约表示的三线性形式和贝林森猜想的注释
- DOI:
10.1007/s100970000026 - 发表时间:
2001 - 期刊:
- 影响因子:2.6
- 作者:
Michael Harris;A. Scholl - 通讯作者:
A. Scholl
G-CODE: enabling systems medicine through innovative informatics
G-CODE:通过创新信息学实现系统医学
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:12.3
- 作者:
Subha Madhavan;Yuriy Gusev;Michael Harris;D. Tanenbaum;Robinder Gauba;K. Bhuvaneshwar;Andrew Shinohara;Kevin Rosso;Lavinia A. Carabet;Lei Song;R. Riggins;S. Dakshanamurthy;Yue Wang;S. Byers;Robert Clarke;L. Weiner - 通讯作者:
L. Weiner
Comparing Blended Learning with Faculty-Led Ultrasound Training: Protocol for a Randomised Controlled Trial (The SIGNATURE Trial).
比较混合式学习与教师主导的超声培训:随机对照试验方案(签名试验)。
- DOI:
10.1024/1661-8157/a003497 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Roman Hari;Kaspar Kälin;Michael Harris;Robin Walter;A. Serra - 通讯作者:
A. Serra
What do General Practitioners think of written reflection? A focus group study
全科医生如何看待书面反思?
- DOI:
10.1080/14739879.2016.1185747 - 发表时间:
2016 - 期刊:
- 影响因子:1.3
- 作者:
P. Curtis;Sarita Gorolay;Anthony Curtis;Michael Harris - 通讯作者:
Michael Harris
Michael Harris的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Harris', 18)}}的其他基金
Langlands correspondences and the arithmetic of automorphic forms
朗兰兹对应和自守形式的算术
- 批准号:
2302208 - 财政年份:2023
- 资助金额:
$ 20.96万 - 项目类别:
Continuing Grant
L-Functions and Geometric Methods in Langlands Duality
朗兰兹对偶中的 L 函数和几何方法
- 批准号:
2001369 - 财政年份:2020
- 资助金额:
$ 20.96万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Geometric Structures in the p-Adic Langlands Program
FRG:合作研究:p-Adic Langlands 计划中的几何结构
- 批准号:
1952667 - 财政年份:2020
- 资助金额:
$ 20.96万 - 项目类别:
Continuing Grant
LSAMP BD: Tennessee State University TLSAMP
LSAMP BD:田纳西州立大学 TLSAMP
- 批准号:
1810991 - 财政年份:2018
- 资助金额:
$ 20.96万 - 项目类别:
Standard Grant
Tennessee Louis Stokes Alliance for Minority Participation
田纳西州路易斯斯托克斯少数族裔参与联盟
- 批准号:
1826954 - 财政年份:2018
- 资助金额:
$ 20.96万 - 项目类别:
Continuing Grant
Automorphic Galois Representations and Automorphic L-functions
自同构伽罗瓦表示和自同构 L 函数
- 批准号:
1404769 - 财政年份:2014
- 资助金额:
$ 20.96万 - 项目类别:
Continuing Grant
NUE: Improvement of Nanoscale Device Education via Theory, Experimental Design, and Characterization
NUE:通过理论、实验设计和表征改进纳米器件教育
- 批准号:
1242171 - 财政年份:2013
- 资助金额:
$ 20.96万 - 项目类别:
Standard Grant
Analysis of RNA-metal ion interactions by solution Raman spectroscopy
通过溶液拉曼光谱分析 RNA-金属离子相互作用
- 批准号:
1121373 - 财政年份:2011
- 资助金额:
$ 20.96万 - 项目类别:
Standard Grant
Collaborative Research: Acquisition of a Dual, Complementary Ground Penetrating Radar System for Geoscience Research and Teaching in South Carolina
合作研究:采购双互补探地雷达系统,用于南卡罗来纳州的地球科学研究和教学
- 批准号:
0323338 - 财政年份:2004
- 资助金额:
$ 20.96万 - 项目类别:
Standard Grant
相似国自然基金
潜叶龟甲在不同寄主植物上的体型分异及其谱系对应关系
- 批准号:32260282
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
高维值分布理论、应用及其与丢番图几何的对应关系
- 批准号:12201643
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
二氧化碳封存区高频噪声响应与注入活动时空对应关系研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
二氧化碳封存区高频噪声响应与注入活动时空对应关系研究
- 批准号:42204058
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于原位检测技术构建高压成型工艺与聚合物结晶结构的对应关系
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
Langlands correspondences and the arithmetic of automorphic forms
朗兰兹对应和自守形式的算术
- 批准号:
2302208 - 财政年份:2023
- 资助金额:
$ 20.96万 - 项目类别:
Continuing Grant
RI: Small: Toward Efficient and Robust Dynamic Scene Understanding Based on Visual Correspondences
RI:小:基于视觉对应的高效、鲁棒的动态场景理解
- 批准号:
2310254 - 财政年份:2023
- 资助金额:
$ 20.96万 - 项目类别:
Standard Grant
Deriving Novel Bulk-Boundary Correspondences for Pseudo-Hermitian Systems
推导出伪厄米系统的新颖体边界对应关系
- 批准号:
20K03761 - 财政年份:2020
- 资助金额:
$ 20.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Crossmodal correspondences involving tastes
涉及品味的跨模式通信
- 批准号:
19K23384 - 财政年份:2019
- 资助金额:
$ 20.96万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Spectral correspondences for negatively curved Riemannian locally symmetric spaces
负弯曲黎曼局部对称空间的谱对应
- 批准号:
432944415 - 财政年份:2019
- 资助金额:
$ 20.96万 - 项目类别:
Research Grants