Workshop on Automorphic Forms and Related Topics
自守形式及相关主题研讨会
基本信息
- 批准号:1701585
- 负责人:
- 金额:$ 2.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-01-15 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The 31st Annual Workshop on Automorphic Forms and Related Topics (AFW) will take place March 6-9, 2017 at East Tennessee State University in Johnson City, Tennessee. The AFW is an internationally recognized, well-respected conference on topics related to automorphic forms, which have played a key role in many recent breakthroughs in mathematics. Continuing a three-decade long tradition, the AFW will bring together a geographically diverse group of participants at a wide range of career stages, from graduate students to senior professors. Typically, about half of the attendees at the AFW are at early stages of their careers, and about one quarter to one third of participants are women. The AFW will continue to provide a supportive and encouraging environment for giving talks, exchanging ideas, and beginning new collaborations. In addition to the research talks, the AFW will - like in past years - have two professional development panels on topics such as good mathematical writing, early career development, and transitioning from one career stage to the next. Furthermore, for the first time at AFW, there will be a "speed" session in which participants (primarily junior mathematicians) present short talks about current research projects which may still be in preliminary stages. Automorphic forms constitute a major area of study in number theory and related areas. One of the goals of the AFW is to promote new interactions and collaborations between researchers working in different areas concerning automorphic forms. Thus, the workshop will highlight a wide range of developments in areas including the analytic, algebraic, combinatorial, and p-adic theory of automorphic forms and related topics such as L-functions. Automorphic forms have played a key role in many breakthroughs in mathematics, including the proofs of Fermat's Last Theorem (by Andrew Wiles), Serre's Conjecture (by Chandrashekhar Khare, Mark Kisin, and Jean-Pierre Wintenberger), the Sato-Tate Conjecture (by Thomas Barnet-Lamb, David Geraghty, Michael Harris, and Richard Taylor), Serre's Uniformity Conjecture (by Yuri Bilu and Pierre Parent),the Monstrous Moonshine Conjecture (for which Borcherds was awarded the Fields Medal), and the Fundamental Lemma (for which Ngo Bau Chau was awarded the Fields Medal). The topics covered in this year's workshop are likely to include Bianchi, elliptic, Jacobi, Hilbert, and Siegel modular forms, elliptic curves and abelian varieties, special values of L-functions, p-adic aspects of L-functions and automorphic forms, connections with representation theory, mock modular forms, quadratic forms, and additional related areas of research.Website:http://automorphicformsworkshop.org/
第31届汽车形式和相关主题的年度研讨会(AFW)将于2017年3月6日至9日在田纳西州约翰逊市的东田纳西州立大学举行。 AFW是一次国际认可的,备受尊重的与自动形式相关的主题会议,在最近的许多数学突破中,它们在许多近期突破中发挥了关键作用。 AFW延续了三个十年的长期传统,将在从研究生到高级教授的各个职业阶段中汇集一群地理上不同的参与者。通常,AFW约有一半的与会者处于职业生涯的早期阶段,大约四分之一到三分之一的参与者是女性。 AFW将继续提供一个支持和令人鼓舞的环境,以进行谈判,交换想法并开始新的合作。除了研究谈判外,AFW还将(就像过去几年一样)在诸如良好数学写作,早期职业发展以及从一个职业阶段过渡到下一个主题等主题上有两个专业发展小组。此外,在AFW上,将首次有一个“速度”会议,参与者(主要是初级数学家)进行了简短的谈判,即可能仍处于初步阶段的研究项目。自动形式构成了数量理论和相关领域的主要研究领域。 AFW的目标之一是促进在不同领域工作的有关自动形式的研究人员之间的新互动和合作。因此,研讨会将重点介绍包括分析性,代数,组合和P-Adic理论的自多态形式和相关主题(例如L功能)的领域的广泛发展。自动形式在数学的许多突破中都起着关键作用,包括塞雷的猜想(由Chandrashekhar Khare,Mark Kisin,Mark Kisin,Mark Kisin和Jean-Pierre Wintenberger),由Thomas Barnet-barnet-barnet-barnet-gerant-gerhamb,hernet-hernet-gerhamb,haragh hernet-gerhamb,由塞尔·威尔·卡尔(Chandrashekhar Khare)(由安德鲁·威尔斯(Andrew Wiles))证明泰勒(Taylor),塞尔(Serre)的统一猜想(由尤里·比卢(Yuri Bilu)和皮埃尔(Pierre)父母作者),可怕的月光猜想(为博尔切尔(Borcherds)获得了田野奖章)和基本的列表(为此,非政府组织的Bau Chau获得了田野奖章)。今年研讨会所涵盖的主题可能包括比安奇,椭圆形,雅各比,希尔伯特和西格尔模块化形式,椭圆曲线和阿贝利亚品种,L功能的特殊价值,l功能的特殊价值,l功能和自动形式的p-亚法方面research.website:http://automorphicformsworkshop.org/
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rodney Keaton其他文献
Counting Tamely Ramified Extensions of Local Fields up to Isomorphism
计算局部域的驯化分支扩展至同构
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Jim Brown;Robert Cass;K. James;Rodney Keaton;S. Parenti;Daniel Shankman - 通讯作者:
Daniel Shankman
Restrictions of Eisenstein Series and Rankin-Selberg Convolution
Eisenstein级数和Rankin-Selberg卷积的限制
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0.9
- 作者:
Rodney Keaton;Ameya Pitale - 通讯作者:
Ameya Pitale
Level stripping for degree 2 Siegel modular forms
2 级 Siegel 模块化形式的水平剥离
- DOI:
10.4310/mrl.2013.v20.n5.a8 - 发表时间:
2013 - 期刊:
- 影响因子:1
- 作者:
Rodney Keaton - 通讯作者:
Rodney Keaton
Congruence primes for Ikeda lifts and the Ikeda ideal
池田提升和池田理想的同余素数
- DOI:
10.2140/pjm.2015.274.27 - 发表时间:
2015 - 期刊:
- 影响因子:0.6
- 作者:
Jim Brown;Rodney Keaton - 通讯作者:
Rodney Keaton
Explicit Level Lowering for 2-Dimensional Modular Galois Representations
二维模伽罗瓦表示的显式水平降低
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Rodney Keaton - 通讯作者:
Rodney Keaton
Rodney Keaton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
面向高光谱植被精细分类的全谱段与多形态特征提取及自动建模方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高光谱植被精细分类的全谱段与多形态特征提取及自动建模方法研究
- 批准号:42201392
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于多模式形态学序列特征和多源先验信息协同的城市建筑物高分遥感自动提取方法研究
- 批准号:42101383
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
基于多模式形态学序列特征和多源先验信息协同的城市建筑物高分遥感自动提取方法研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
计算机自动细胞荧光图像形态分析的方法研究
- 批准号:62002100
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
Conference: Workshop on Automorphic Forms and Related Topics
会议:自守形式及相关主题研讨会
- 批准号:
2401444 - 财政年份:2024
- 资助金额:
$ 2.1万 - 项目类别:
Standard Grant
Workshop on Automorphic Forms and Related Topics
自守形式及相关主题研讨会
- 批准号:
2005654 - 财政年份:2020
- 资助金额:
$ 2.1万 - 项目类别:
Standard Grant
Workshop on Automorphic Forms and Related Topics
自守形式及相关主题研讨会
- 批准号:
1854113 - 财政年份:2019
- 资助金额:
$ 2.1万 - 项目类别:
Standard Grant
Workshop on Automorphic Forms and Related Topics
自守形式及相关主题研讨会
- 批准号:
1802058 - 财政年份:2018
- 资助金额:
$ 2.1万 - 项目类别:
Standard Grant
Workshop on Automorphic Forms and Related Topics
自守形式及相关主题研讨会
- 批准号:
1601959 - 财政年份:2016
- 资助金额:
$ 2.1万 - 项目类别:
Standard Grant