EAGER: TDM solar cells: Towards Low Cost Manufacturing of 30% Monolithic Perovskite/CuInSe2 Tandems with Solution Processing and Novel Carbon Nanotube Tunnel Junctions

EAGER:%20TDM%20solar%20cells:%20走向%20Low%20Cost%20Manufacturing%20of%2030%%20Monolithic%20Perovskite/CuInSe2%20Tandems%20with%20Solution%20Processing%20and%20Novel%20Carbon%20Nanotube%20Tunnel%20路口

基本信息

  • 批准号:
    1665172
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-03-15 至 2020-02-29
  • 项目状态:
    已结题

项目摘要

AbstractThe nontechnical description As a result of progress in science and engineering over the past 5-10 years, solar panels have become an economically viable means for generating electricity for homes, industries, and transportation. In fact, the cost of providing clean power from solar cells has been cut in half in only 6 years, and consequently, the number of jobs in the industry has skyrocketed. This project focuses on developing next generation solar cell technologies through new designs and manufacturing techniques that will reduce costs further while increasing overall performance. Since solar panel technology has yet to reach maturity, tremendous benefits for society are possible if recently identified engineering and science hurdles can be overcome. A key goal is to implement new materials, manufacturing processes, and characterization tools to enhance the fraction of incident sunlight that is converted to electrical power. Current commercial solar panel designs use a single absorbing semiconductor layer in the device that allows a theoretical maximum of only ~30% conversion of the power in sunlight to electricity. To date, approximately two-thirds of this maximum has been reached. Next generation concepts involve the use of two absorbing semiconducting layers in the so-called "tandem" device structure which will allow a theoretical maximum of ~45% conversion of the incident sunlight to electrical power. Although high efficiency tandems have been fabricated from high cost materials for use in space power, the cost of these cells is too high for large-scale terrestrial use. This project will use a novel strategy that enables dissimilar semiconductor materials to work together and promotes low-cost production technologies of the resulting high efficiency tandem solar cells. Importantly, the approach we will use ensures that the developed devices will be amenable to high-volume manufacturing. The project integrates educational opportunities for students as well as outreach efforts to stakeholders, both designed to increase diversity in our science and engineering workforce and to broaden the impact of this project.The technical descriptionIn this project a new general approach will be developed for fabricating monolithic tandems from dissimilar materials, based on the capabilities of novel solution processable single-wall carbon nanotube tunnel junctions. This approach will create avenues for unlocking the mass production potential of high efficiency, low cost monolithically integrated tandem solar cells for terrestrial use. The general research plan is expected to lead to tandems with a PCE 30%. The research program leverages existing high efficiency CuIn1-xGaxSe2 (CIGS) devices produced by vacuum co-evaporation and capabilities for producing high efficiency CIGS and perovskite devices based on CH3NH3PbI3 by solution processing in a move toward an all-solution processed monolithically integrated tandem that can be fabricated in one continuous, low-cost manufacturing process. As an integral part of the research, analysis will be performed via spectroscopic ellipsometry and laser beam-induced voltage and current response measurements that will guide the synthesis work. These tools will enable in-depth simulations for understanding of tandem cell performance and will expedite adjustment of the band-gap ratios and layer thicknesses to insure optimal collection and current matching between cells.
摘要,由于过去5 - 10年的科学和工程进步,非技术性描述是太阳能电池板已成为为家庭,行业和运输发电的经济上可行的手段。 实际上,在短短6年内,从太阳能电池提供清洁能源的成本已减少了一半,因此,该行业的工作数量飙升。 该项目着重于通过新的设计和制造技术开发下一代太阳能电池技术,这些技术将进一步降低成本,同时提高整体性能。 由于太阳能电池板技术尚未达到成熟度,因此,如果可以克服最近确定的工程和科学障碍,则可以对社会产生巨大的好处。一个关键目标是实施新材料,制造过程和表征工具,以增强转换为电力的事件阳光的比例。 当前的商用太阳能电池板设计在设备中使用单个吸收的半导体层,该层仅允许在阳光下的电源转换为电力的理论最大值约30%。 迄今为止,已经达到了最大的三分之二。 下一代概念涉及在所谓的“串联”设备结构中使用两个吸收的半导体层,这将允许将入射太阳转换为电力的理论最大值约45%。 尽管已经用高成本的材料制造出高效率的串联,以用于空间功率,但这些电池的成本对于大规模的陆地使用而言太高。 该项目将使用一种新型策略,使不同的半导体材料能够共同起作用,并促进所得高效率串联太阳能电池的低成本生产技术。 重要的是,我们将使用的方法确保开发的设备适合大容量制造。 该项目融合了学生的教育机会,并为利益相关者提供宣传工作,既旨在提高我们的科学和工程劳动力的多样性,又扩大了该项目的影响。在该项目中,将开发一种新的通用方法,以基于新颖的解决方案处理的单层材料制造单层串联材料,该方法是基于新颖的解决方案处理的新型单壁式单壁式Carbon Nanotube Nanotube nanotube tumbon tulbon tunipions的功能。 这种方法将创建途径,以释放高效率,低成本单层串联太阳能电池的质量生产潜力,以供陆生使用。 预计一般研究计划将导致PCE 30%的串联。 该研究计划利用真空蒸发和能力生产的现有高效Cuin1-XGAXSE2(CIGS)设备,用于生产高效率的CIGS和基于CH3NH3PBI3的CH3NH3PBI3,通过解决方案处理中的解决方案处理,从而朝着全解决过程中的整体整体整合的过程中,可以连续制造一项连续制造,从而可以连续制造一项连续制造。 作为研究的组成部分,将通过光谱椭圆法和激光束诱导的电压和电流响应测量进行分析,以指导合成工作。 这些工具将启用深入的模拟,以了解串联细胞性能,并加快对带隙比和层厚度的调整,以确保细胞之间的最佳收集和电流匹配。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cost analysis of thin film tandem solar cells using real world energy yield modelling
使用真实世界能源产量模型进行薄膜串联太阳能电池的成本分析
  • DOI:
    10.1109/pvsc40753.2019.8980734
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ahangharnejhad, Ramez Hosseinian;Phillips, Adam B;Celik, Ilke;Song, Zhaoning;Yan, Yanfa;Heben, Michael J
  • 通讯作者:
    Heben, Michael J
Structural and Optical Properties of Two-Stage CuInSe 2 Thin Films Studied by Real Time Spectroscopic Ellipsometry
实时光谱椭圆光度法研究两级 CuInSe 2 薄膜的结构和光学性质
  • DOI:
    10.1109/pvsc40753.2019.8980671
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sapkota, Dhurba R.;Collins, Robert W.;Pradhan, Puja;Koirala, Prakash;Irving, Richard;Phillips, Adam B.;Ellingson, Randy J.;Heben, Michael J.;Marsillac, Sylvain;Podraza, Nikolas J.
  • 通讯作者:
    Podraza, Nikolas J.
Energy Payback Time (EPBT) and Energy Return on Energy Invested (EROI) of Perovskite Tandem Photovoltaic Solar Cells
  • DOI:
    10.1109/jphotov.2017.2768961
  • 发表时间:
    2018-01-01
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Celik, Ilke;Philips, Adam B.;Apul, Defne
  • 通讯作者:
    Apul, Defne
Optical design of perovskite solar cells for applications in monolithic tandem configuration with CuInSe2 bottom cells
  • DOI:
    10.1557/adv.2018.464
  • 发表时间:
    2018-01-01
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Ahangharnejhad, Ramez H.;Song, Zhaoning;Heben, Michael J.
  • 通讯作者:
    Heben, Michael J.
Spectroscopic Ellipsometry Investigation of CuInSe2 as a Narrow Bandgap Component of Thin Film Tandem Solar Cells
CuInSe2 作为薄膜串联太阳能电池窄带隙组件的光谱椭圆光度研究
  • DOI:
    10.1109/pvsc.2018.8548177
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sapkota, Dhurba R.;Koirala, Prakash;Pradhan, Puja;Shrestha, Niraj;Junda, Maxwell M.;Phillips, Adam B.;Ellingson, Randy J.;Heben, Michael J.;Marsillac, Sylvain;Podraza, Nikolas J.
  • 通讯作者:
    Podraza, Nikolas J.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Heben其他文献

Design and optimization of a modular hydrogen-based integrated energy system to maximize revenue via nuclear-renewable sources
  • DOI:
    10.1016/j.energy.2024.133763
  • 发表时间:
    2024-12-30
  • 期刊:
  • 影响因子:
  • 作者:
    Sadab Mahmud;Binaka Ponkiya;Sravya Katikaneni;Srijana Pandey;Kranthikiran Mattimadugu;Zonggen Yi;Victor Walker;Congjian Wang;Tyler Westover;Ahmad Y. Javaid;Michael Heben;Raghav Khanna
  • 通讯作者:
    Raghav Khanna

Michael Heben的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

TDM-PON链路故障探测与定位一体化设计关键技术研究
  • 批准号:
    61901289
  • 批准年份:
    2019
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
一体化交通需求管理组合策略作用机制研究
  • 批准号:
    71871131
  • 批准年份:
    2018
  • 资助金额:
    49.0 万元
  • 项目类别:
    面上项目
PPARγ诱导M2巨噬细胞替代激活对利用异种TDM构建生物牙根的免疫调控相关研究
  • 批准号:
    31771062
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
TDM作用下个体活动-出行行为序列及群体集聚规律研究
  • 批准号:
    50908052
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
TDM策略与居民出行行为耦合机理的仿真研究
  • 批准号:
    50908099
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

EAGER: TDM Solar Cells: Collaborative Research: Exploration of High Open-Circuit Voltage and Stable Wide-Bandgap Cu2BaSnS4 Solar Cells for Monolithic Tandem Cell Applications
EAGER:TDM 太阳能电池:合作研究:用于单片串联电池应用的高开路电压和稳定宽带隙 Cu2BaSnS4 太阳能电池的探索
  • 批准号:
    1665028
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER:TDM Solar Cells: Collaborative Research: 30%-Efficient, Stable Perovskite/Silicon Monolithic Tandem Solar Cells
EAGER:TDM%20Solar%20Cells:%20%20Collaborative%20Research:%20%20%2030%-高效、%20Stable%20钙钛矿/硅%20Monolithic%20Tandem%20Solar%20Cells
  • 批准号:
    1664669
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER:TDM Solar Cells: Collaborative Research: 30%-Efficient, Stable Perovskite/Silicon Monolithic Tandem Solar Cells
EAGER:TDM%20Solar%20%20%20Cells:%20Collaborative%20研究:%20%20%2030%-高效、%20Stable%20钙钛矿/硅%20Monolithic%20Tandem%20Solar%20Cells
  • 批准号:
    1664710
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: TDM Solar Cells: Collaborative Research: Monolithic 2-Junction Polycrystalline II-VI / Silicon Solar Cells
EAGER:TDM 太阳能电池:合作研究:单片 2 结多晶 II-VI/硅太阳能电池
  • 批准号:
    1665299
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: TDM Solar Cells: Collaborative Research: Monolithic 2-Junction Polycrystalline II-VI / Silicon Solar Cells
EAGER:TDM 太阳能电池:合作研究:单片 2 结多晶 II-VI/硅太阳能电池
  • 批准号:
    1665508
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了