Collaborative Research: SusChEM: Manipulation of Reaction Selectivity in the electrochemical environment for biomass-to-chemicals conversions

合作研究:SusChEM:生物质到化学品转化的电化学环境中反应选择性的操纵

基本信息

  • 批准号:
    1665176
  • 负责人:
  • 金额:
    $ 43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

Manipulation of reaction selectivity in the electrochemical environment for biomass-to-chemicals conversions Fuels and chemicals derived from plant matter (biomass) are a promising means to sustainably meet demands for energy and commodity products. Biomass is a "carbon neutral" feedstock because it grows by incorporating CO2 from the atmosphere while only consuming solar energy. This project is finding new and efficient outlets to generate useful chemicals from components of biomass that are currently difficult to process. While most biomass conversions are presently performed using catalysts and energy supplied by heat, this work is exploiting unique aspects of electricity-driven catalytic reactions in order to achieve synthesis of useful chemicals at low temperatures and pressures. The electricity required for these processes may, in turn, be derived from renewable sources such as wind and solar. A fundamental approach is being taken in which experimental techniques that probe the nature of the catalytic reactions are combined with computer simulations to build a comprehensive picture of the factors that govern reaction selectivity and to design more efficient processes. Insights from this work have broader application in extending the scope of green chemistry. This research is also being used to promote science education by involving undergraduate student researchers for summer internships, and the PI's are additionally developing a series of interactive educational modules related to understanding the physical processes governing electro-catalytic reactions. This project is investigating electrochemical control over selectivity in the conversion of biomass-derived feedstocks to desired chemical targets. Electrochemical conversions offer advantages in sustainable processing since they generally operate at low temperatures and utilize aqueous feedstocks directly. Using selective oxidation of furfural and 5-hydroxymethyl furfural over Pt electrodes as probe systems, this work focuses on determining the different mechanisms by which selectivity can be manipulated through control over electrode potential and composition. Mechanisms being explored include differentiation of charge-transfer reactions relative to neutral atom transfer reactions, variation in surface coverage of oxygen and organic species, and the role of promoters with specific reactivity or geometry. Three complementary research approaches are being integrated to characterize these effects. Measurement of electrochemical kinetics on metal catalysts is combined with in-situ spectroscopy to identify reaction pathways; surface science experiments are used on a model Pt(111) surface to study oxidation elementary steps in detail; and finally, density functional theory calculations are used to investigate the same surface chemistry, including simulation of electric potential effects and the water-metal interface. The three research thrusts provide complementary information and enrich the depth of understanding of the electrochemical environment. Insights from this work have broader application in extending the scope of green chemistry and electrochemical synthetic routes. This research is also being used to promote science education by involving undergraduate student researchers for summer internships, and the PI's are additionally developing a series of interactive educational modules related to understanding the physical processes governing electro-catalytic reactions.
在电化学环境中操纵反应选择性的生物质到化学物质转化燃料和源自植物质量的化学物质(生物量)是可持续地满足能源和商品产品需求的一种有希望的方法。生物质是一种“碳中性”原料,因为它通过仅消耗太阳能而在大气中掺入二氧化碳来生长。该项目正在寻找新的高效插座,以从目前难以处理的生物量的组成部分中生成有用的化学物质。 尽管目前使用热量催化剂和能量进行的大多数生物量转化次数均进行,但这项工作正在利用电力驱动的催化反应的独特方面,以实现在低温和压力下有用的化学物质的合成。这些过程所需的电力可能又来自可再生能源,例如风和太阳能。正在采用一种基本方法,其中将探测催化反应性质的实验技术与计算机模拟结合在一起,以构建控制反应选择性并设计更有效过程的因素的全面图片。这项工作的见解在扩展绿色化学范围方面具有更广泛的应用。这项研究还用于通过涉及本科生研究人员进行暑期实习来促进科学教育,而PI还在开发一系列与理解有关电流反应的物理过程有关的互动教育模块。 该项目正在研究对生物量衍生的原料转换为所需化学靶标的选择性的电化学控制。电化学转换在可持续加工方面具有优势,因为它们通常在低温下运行并直接利用水性原料。 将呋喃和5-羟基甲基呋喃的选择性氧化作为探针系统,这项工作着重于确定可以通过控制电极电位和组成来控制选择性的不同机制。探索的机制包括与中性原子转移反应,氧和有机物种的表面覆盖率变化以及具有特定反应性或几何形状的启动子的作用相对的电荷转移反应的分化。正在整合三种互补的研究方法以表征这些效果。金属催化剂上电化学动力学的测量与原位光谱相结合,以鉴定反应途径。表面科学实验用于PT模型(111)表面,以详细研究氧化基本步骤;最后,密度功能理论计算用于研究相同的表面化学,包括电势效应和水 - 金属界面的模拟。这三项研究推力提供了互补的信息,并丰富了对电化学环境的理解深度。 这项工作的见解在扩展绿色化学和电化学合成路线的范围方面具有更广泛的应用。这项研究还用于通过涉及本科生研究人员进行暑期实习来促进科学教育,而PI还在开发一系列与理解有关电流反应的物理过程有关的互动教育模块。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Identifying “Optimal” Electrocatalysts: Impact of Operating Potential and Charge Transfer Model
识别“最佳”电催化剂:工作潜力和电荷转移模型的影响
  • DOI:
    10.1021/acscatal.7b03235
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    12.9
  • 作者:
    Román, Alex M.;Dudoff, Jessica;Baz, Adam;Holewinski, Adam
  • 通讯作者:
    Holewinski, Adam
Accelerating Electro-oxidation Turnover Rates via Potential-Modulated Stimulation of Electrocatalytic Activity
  • DOI:
    10.1021/acs.iecr.0c04414
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    A. Román;Taylor D. Spivey;J. Medlin;Adam Holewinski
  • 通讯作者:
    A. Román;Taylor D. Spivey;J. Medlin;Adam Holewinski
Insight into the Oxidation Mechanism of Furanic Compounds on Pt(111)
呋喃类化合物在Pt(111)上的氧化机理研究
  • DOI:
    10.1021/acscatal.9b03983
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    12.9
  • 作者:
    Mark, Lesli O.;Agrawal, Naveen;Román, Alex M.;Holewinski, Adam;Janik, Michael J.;Medlin, J. Will
  • 通讯作者:
    Medlin, J. Will
Electro-oxidation of furfural on gold is limited by furoate self-assembly
  • DOI:
    10.1016/j.jcat.2020.08.034
  • 发表时间:
    2020-11-01
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Roman, Alex M.;Agrawal, Naveen;Holewinski, Adam
  • 通讯作者:
    Holewinski, Adam
Elucidating Acidic Electro-Oxidation Pathways of Furfural on Platinum
  • DOI:
    10.1021/acscatal.9b02656
  • 发表时间:
    2019-11-01
  • 期刊:
  • 影响因子:
    12.9
  • 作者:
    Roman, Alex M.;Hasse, Joseph C.;Holewinski, Adam
  • 通讯作者:
    Holewinski, Adam
共 5 条
  • 1
前往

Adam Holewinski其他文献

Predicting macro-kinetic observables with the generalized degree of rate control in electrocatalysis
用电催化中速率控制的广义程度来预测宏观动力学可观测值
  • DOI:
  • 发表时间:
    2021
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Baz;Adam Holewinski
    A. Baz;Adam Holewinski
  • 通讯作者:
    Adam Holewinski
    Adam Holewinski
Electrochemical reduction selectivity of crotonaldehyde on copper
巴豆醛对铜的电化学还原选择性
  • DOI:
  • 发表时间:
    2020
    2020
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Zachary J. Barton;G. H. Garrett;Nicholas Kurtyka;Taylor D. Spivey;Joshua A. Schaidle;Adam Holewinski
    Zachary J. Barton;G. H. Garrett;Nicholas Kurtyka;Taylor D. Spivey;Joshua A. Schaidle;Adam Holewinski
  • 通讯作者:
    Adam Holewinski
    Adam Holewinski
共 2 条
  • 1
前往

Adam Holewinski的其他基金

Understanding electrochemical hydrogenation reactions over post-transition metal electrodes: the role of incidental mediators and metastable phases
了解后过渡金属电极上的电化学氢化反应:偶然介体和亚稳态相的作用
  • 批准号:
    2301381
    2301381
  • 财政年份:
    2023
  • 资助金额:
    $ 43万
    $ 43万
  • 项目类别:
    Standard Grant
    Standard Grant
NSF-DFG Echem: CAS: Cooperativity Between Immobilized Redox Mediators for Selective Anodic Biomass Valorization
NSF-DFG Echem:CAS:固定化氧化还原介体之间的协同作用,用于选择性阳极生物质增值
  • 批准号:
    2055689
    2055689
  • 财政年份:
    2021
  • 资助金额:
    $ 43万
    $ 43万
  • 项目类别:
    Standard Grant
    Standard Grant
CAREER: Understanding Bifunctionality in Organic Electro-oxidation Catalysis
职业:了解有机电氧化催化中的双功能
  • 批准号:
    1944834
    1944834
  • 财政年份:
    2020
  • 资助金额:
    $ 43万
    $ 43万
  • 项目类别:
    Continuing Grant
    Continuing Grant
MRI: Acquisition of a High-Sensitivity Low-Energy Ion Scattering (HS-LEIS) Spectrometer with Multiple Reactive Environment Transfer for Interrogating Surfaces and Interfaces
MRI:获取具有多个反应环境传输功能的高灵敏度低能量离子散射 (HS-LEIS) 光谱仪,用于询问表面和界面
  • 批准号:
    1919845
    1919845
  • 财政年份:
    2019
  • 资助金额:
    $ 43万
    $ 43万
  • 项目类别:
    Standard Grant
    Standard Grant
EAGER: Identifying Active Sites in Electrocatalysis by Steady-State Isotope-Transient Technique
EAGER:通过稳态同位素瞬态技术识别电催化活性位点
  • 批准号:
    1835967
    1835967
  • 财政年份:
    2018
  • 资助金额:
    $ 43万
    $ 43万
  • 项目类别:
    Standard Grant
    Standard Grant
Mixed Ion Electron Conductor (MIEC) Cascade Electrodes for High Density Energy Storage in Li2O2
用于 Li2O2 高密度储能的混合离子电子导体 (MIEC) 级联电极
  • 批准号:
    1806059
    1806059
  • 财政年份:
    2018
  • 资助金额:
    $ 43万
    $ 43万
  • 项目类别:
    Standard Grant
    Standard Grant

相似国自然基金

钛基骨植入物表面电沉积镁氢涂层及其促成骨性能研究
  • 批准号:
    52371195
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
CLMP介导Connexin45-β-catenin复合体对先天性短肠综合征的致病机制研究
  • 批准号:
    82370525
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
人工局域表面等离激元高灵敏传感及其系统小型化的关键技术研究
  • 批准号:
    62371132
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
优先流对中俄原油管道沿线多年冻土水热稳定性的影响机制研究
  • 批准号:
    42301138
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
用于稳定锌负极的界面层/电解液双向调控研究
  • 批准号:
    52302289
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: SUSCHEM: Engineering Polymer-Nanocatalyst Membranes for Direct Capture of CO2 and Electrochemical Conversion to C2+ Liquid Fuel
合作研究:SUSCHEM:用于直接捕获 CO2 和电化学转化为 C2 液体燃料的工程聚合物纳米催化剂膜
  • 批准号:
    2324346
    2324346
  • 财政年份:
    2023
  • 资助金额:
    $ 43万
    $ 43万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: SUSCHEM: Engineering Polymer-Nanocatalyst Membranes for Direct Capture of CO2 and Electrochemical Conversion to C2+ Liquid Fuel
合作研究:SUSCHEM:用于直接捕获 CO2 和电化学转化为 C2 液体燃料的工程聚合物纳米催化剂膜
  • 批准号:
    2324345
    2324345
  • 财政年份:
    2023
  • 资助金额:
    $ 43万
    $ 43万
  • 项目类别:
    Standard Grant
    Standard Grant
SusChEM: Collaborative Research: Identification of the critical length scales and chemistries responsible for the anti-fouling properties of heterogeneous surfaces
SusChEM:合作研究:确定负责异质表面防污性能的临界长度尺度和化学成分
  • 批准号:
    2023847
    2023847
  • 财政年份:
    2019
  • 资助金额:
    $ 43万
    $ 43万
  • 项目类别:
    Standard Grant
    Standard Grant
SusChem Collaborative Research: Process Optimization of Novel Routes for the Production of bio-based Para-Xylene
SusChem 合作研究:生物基对二甲苯生产新路线的工艺优化
  • 批准号:
    2005905
    2005905
  • 财政年份:
    2019
  • 资助金额:
    $ 43万
    $ 43万
  • 项目类别:
    Continuing Grant
    Continuing Grant
SusChEM: Collaborative Research: Efficient biological activation and conversion of short-chain hydrocarbons
SusChEM:合作研究:短链碳氢化合物的高效生物活化和转化
  • 批准号:
    1938893
    1938893
  • 财政年份:
    2018
  • 资助金额:
    $ 43万
    $ 43万
  • 项目类别:
    Standard Grant
    Standard Grant