Microlocal Analysis of Linear and Nonlinear Problems
线性和非线性问题的微局部分析
基本信息
- 批准号:1664683
- 负责人:
- 金额:$ 20.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project develops and applies tools from the field of mathematics known as microlocal analysis. Roughly speaking, microlocal analysis devises methods to keep track of the position and frequency (or momentum) of waves (or, more generally, functions) simultaneously. The project's applications are to wave propagation and other related phenomena, as well as to inverse problems for determining a function from integrals along curves (the X-ray transform) and related problems for determining the structure of a material from boundary measurements. Although the project itself concerns their mathematical theory, the problems under investigation are closely connected to the physical world. Wave propagation is ubiquitous in nature, with electromagnetic waves, such as light, being one of the most prevalent examples. The theory of general relativity is another important physical example via (the recently detected) gravitational waves. Scattering theory for quantum particles (such as protons and electrons) is another subject governed by microlocal analysis, aspects of which enter into the description of both quantum waves at large distances and semiclassical phenomena (those in which Planck's constant can be regarded as small, often the case in chemistry). The inverse problems under study are also of broad significance. One application of the theory under development here is the determination of an unknown variable sound speed in an object via the measurement of travel times of waves, which for instance is relevant to imaging to interior of Earth using the travel times of earthquake waves.Parts of this project describe the long-time or far-field behavior of waves on curved space-times. Physically these arise in scattering theory and general relativity, including electromagnetic waves on a curved background. The microlocal approach to analysis on these spaces has made breakthroughs possible in work on linear and nonlinear problems on asymptotically (real) hyperbolic spaces as well as on Kerr-de Sitter space. The projects here aim to improve the understanding of Lorentzian scattering spaces, which include asymptotically Minkowski spaces (asymptotically flat spaces, which our universe approximates, at least locally, even if there is a small positive cosmological constant). Other projects concern the behavior of waves at edges -- specifically, the diffraction of the Rayleigh (surface) waves of elasticity. Yet another main area is inverse problems, building on recently-developed tools for spatially localized inversion of the geodesic X-ray transform, including the solution of fixed conformal class boundary rigidity: under suitable assumptions, one can determine a variable sound speed inside an object from the travel times of waves between points on the surface. The parts of the project in this area aim to extend the foregoing result to tensors, which describe anisotropic sound speeds in an appropriate sense; namely, the project will investigate boundary rigidity, for example, recovering a Riemannian metric from its boundary distance function.
该项目开发并应用了数学领域的工具,称为微局部分析。大致来说,微局部分析设计了方法,以跟踪波(或更一般而言,函数)的位置和频率(或动量)。该项目的应用是浪潮传播和其他相关现象,以及用于确定沿曲线积分(X射线变换)的功能的逆问题,以及确定从边界测量值的材料结构的相关问题。尽管该项目本身涉及他们的数学理论,但所研究的问题与物理世界密切相关。波传播本质上是普遍存在的,电磁波(例如光)是最普遍的例子之一。通过(最近检测到的)引力波是另一个重要的物理示例。量子颗粒(例如质子和电子)的散射理论是另一个受微世分析控制的受试者,其各个方面都涉及大距离和半经典现象的量子波的描述(planck常数可以被视为小的,通常是化学中的情况)。研究的反问题也具有广泛的意义。这里开发的理论的一种应用是通过测量波的行进时间来确定对象中未知的变量声速,例如,该波浪使用地震波的旅行时间与地球内部成像相关。从物理上讲,这些是在散射理论和一般相对论中出现的,包括弯曲背景上的电磁波。在这些空间上进行分析的微局部方法使得在渐近(真实)双曲线空间以及Kerr-DE安慰剂空间上的线性和非线性问题方面的突破成为可能。这里的项目旨在提高对洛伦兹散射空间的理解,其中包括渐近的minkowski空间(渐近平坦的空间,我们的宇宙在本地近似,即使存在一个小的积极宇宙学常数)。其他项目涉及边缘波的行为 - 特别是雷利(表面)弹性的衍射。另一个主要领域是逆问题,建立在最近开发的工具上,用于在空间定位的地球X射线变换的空间定位倒置,包括解决固定保形的类边界刚度的解决方案:在合适的假设下,可以确定对象内部从表面上的波浪中的波动时间来确定对象内部的可变声速。该区域的项目部分旨在将上述结果扩展到张量,以适当的意义描述各向异性音速;也就是说,该项目将研究边界刚度,例如,从其边界距离函数中恢复了Riemannian度量。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Essential self-adjointness of the wave operator and the limiting absorption principle on Lorentzian scattering spaces
波算子的本质自伴性与洛伦兹散射空间上的极限吸收原理
- DOI:10.4171/jst/301
- 发表时间:2020
- 期刊:
- 影响因子:1
- 作者:Vasy, András
- 通讯作者:Vasy, András
Stability of Minkowski space and polyhomogeneity of the metric
- DOI:10.1007/s40818-020-0077-0
- 发表时间:2020-06-01
- 期刊:
- 影响因子:2.8
- 作者:Hintz, Peter;Vasy, Andras
- 通讯作者:Vasy, Andras
Recovery of Material Parameters in Transversely Isotropic Media
- DOI:10.1007/s00205-019-01421-5
- 发表时间:2019-07
- 期刊:
- 影响因子:2.5
- 作者:Maarten V. de Hoop;G. Uhlmann;A. Vasy
- 通讯作者:Maarten V. de Hoop;G. Uhlmann;A. Vasy
Asymptotic Behavior of Cosmologies with $$\Lambda >0$$ in $$2+1$$ Dimensions
$$Lambda >0$$ 在 $$2 1$$ 维度中的宇宙论的渐近行为
- DOI:10.1007/s00220-020-03706-3
- 发表时间:2020
- 期刊:
- 影响因子:2.4
- 作者:Creminelli, Paolo;Senatore, Leonardo;Vasy, András
- 通讯作者:Vasy, András
共 4 条
- 1
Andras Vasy的其他基金
Microlocal Analysis and Geometry
微局部分析和几何
- 批准号:22470042247004
- 财政年份:2023
- 资助金额:$ 20.4万$ 20.4万
- 项目类别:Standard GrantStandard Grant
Conference: Geometric Applications of Microlocal Analysis
会议:微局部分析的几何应用
- 批准号:22109362210936
- 财政年份:2022
- 资助金额:$ 20.4万$ 20.4万
- 项目类别:Standard GrantStandard Grant
Microlocal Analysis and Applications
微局部分析及应用
- 批准号:19539871953987
- 财政年份:2020
- 资助金额:$ 20.4万$ 20.4万
- 项目类别:Standard GrantStandard Grant
Conference Proposal: Modern Theory of Wave Equations Program at the Erwin Schrodinger Institute
会议提案:埃尔文·薛定谔研究所的现代波动方程理论项目
- 批准号:14652911465291
- 财政年份:2015
- 资助金额:$ 20.4万$ 20.4万
- 项目类别:Standard GrantStandard Grant
Microlocal analysis for waves and inverse problems
波和反问题的微局域分析
- 批准号:13614321361432
- 财政年份:2014
- 资助金额:$ 20.4万$ 20.4万
- 项目类别:Continuing GrantContinuing Grant
Conference on Microlocal Methods in Mathematical Physics and Global Analysis
数学物理和全局分析中的微局域方法会议
- 批准号:10679241067924
- 财政年份:2011
- 资助金额:$ 20.4万$ 20.4万
- 项目类别:Standard GrantStandard Grant
Propagation Phenomena for Waves and Scattering
波和散射的传播现象
- 批准号:10687421068742
- 财政年份:2011
- 资助金额:$ 20.4万$ 20.4万
- 项目类别:Continuing GrantContinuing Grant
Geometric Analysis -- A Conference in Luminy, France, Winter 2011
几何分析——2011 年冬季在法国 Luminy 举行的会议
- 批准号:10622881062288
- 财政年份:2010
- 资助金额:$ 20.4万$ 20.4万
- 项目类别:Standard GrantStandard Grant
CMG: Nonlinear Elastic-Wave Inverse Scattering and Tomography - from Cracks to Mantle Convection
CMG:非线性弹性波逆散射和断层扫描 - 从裂缝到地幔对流
- 批准号:10252591025259
- 财政年份:2010
- 资助金额:$ 20.4万$ 20.4万
- 项目类别:Continuing GrantContinuing Grant
Wave propagation: singularities and asymptotics
波传播:奇点和渐进
- 批准号:08012260801226
- 财政年份:2008
- 资助金额:$ 20.4万$ 20.4万
- 项目类别:Standard GrantStandard Grant
相似国自然基金
非均匀风场下考虑侧向运动的大跨桥梁非线性颤振分析方法与风洞试验研究
- 批准号:52308480
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
概率约束条件下非线性系统混合最优控制的数值算法设计、分析与应用
- 批准号:62363005
- 批准年份:2023
- 资助金额:32.00 万元
- 项目类别:地区科学基金项目
异质电力电子多馈入系统非线性动态稳定机理分析与主动协同控制研究
- 批准号:52377111
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
多层级打捻植物纤维增强复合材料非线性力学行为协同跨尺度分析方法
- 批准号:12302183
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
家庭消费与投资的同群效应——基于非线性空间计量模型的分析
- 批准号:72303151
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Structural Performance Analysis of a Floating Green Energy Storage Subjected to Non-Linear Loads
非线性载荷下浮动绿色储能结构性能分析
- 批准号:29021222902122
- 财政年份:2024
- 资助金额:$ 20.4万$ 20.4万
- 项目类别:StudentshipStudentship
Time series clustering to identify and translate time-varying multipollutant exposures for health studies
时间序列聚类可识别和转化随时间变化的多污染物暴露以进行健康研究
- 批准号:1074934110749341
- 财政年份:2024
- 资助金额:$ 20.4万$ 20.4万
- 项目类别:
Achieving Sustained Control of Inflammation to Prevent Post-Traumatic Osteoarthritis (PTOA)
实现炎症的持续控制以预防创伤后骨关节炎 (PTOA)
- 批准号:1064122510641225
- 财政年份:2023
- 资助金额:$ 20.4万$ 20.4万
- 项目类别:
Personalizing Circumpapillary Retinal Nerve Fiber Layer Thickness Norms for Glaucoma
个性化青光眼环视乳头视网膜神经纤维层厚度标准
- 批准号:1072804210728042
- 财政年份:2023
- 资助金额:$ 20.4万$ 20.4万
- 项目类别:
Investigating relationships between naturalistic light exposure and sleep
研究自然光照与睡眠之间的关系
- 批准号:1073943010739430
- 财政年份:2023
- 资助金额:$ 20.4万$ 20.4万
- 项目类别: