Online Nonintrusive Identification and Monitoring of Internal Weak Points of Electro Energy Devices Using Package Surface Temperature
利用封装表面温度在线非侵入式识别和监测电能设备的内部薄弱点
基本信息
- 批准号:1663562
- 负责人:
- 金额:$ 33.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-15 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Electro-energy devices (such as batteries) play an essential role in modern society with their wide spread applications that span various sectors such as transportation, healthcare, communication and renewable energy generation to name a few. Currently, assessing the longevity of such devices while they are in operation is an extremely challenging task. As a result, there exists a huge risk of untimely failure of such devices in critical missions and/or situations leading to safety issues and financial loss. Currently, there are no general, effective approaches to online identification of internal weak points and monitoring of the aging processes and health conditions of different electro-energy devices while in operation. This project formulates and demonstrates new universal dynamic modeling and system identification methodologies for low-cost online identification and condition monitoring of internal weak points of electro energy devices using their package surface temperatures. The methodologies do not intrude upon the devices or interrupt their operation. The results of this research will enhance real-time, predictive condition awareness and improve the understanding of aging and failure mechanisms of electro energy devices, which will help in designing more reliable devices. Enhanced condition awareness and design will greatly improve safety and reliability and reduce the cost and financial risk of using electro energy devices. This project will provide interdisciplinary research training for graduate and undergraduate students and STEM education for K-12 school students focusing on dynamic system modeling and identification for energy systems applications.This project will create a new dynamic modeling and system identification-based universal mathematical framework for nonintrusive online identification and condition monitoring of internal weak points of electro energy devices using their thermal signature. The framework incorporates a new universal interpretation for the complex aging processes of internal weak points via the changes in the three-dimensional electrothermal dynamics of the devices estimated by measuring package surface temperatures. Based on this interpretation, a new mathematical modeling approach will be developed to adaptively characterize the aging-related electrothermal dynamics of the devices via high-fidelity, physics-based modeling, automated model order reduction with quantifiable error bounds, online parameter identification for the reduced-order model, and high-order model reconstruction. The identified parameters will contain information on locations, aging processes, and health conditions of the internal weak points and therefore can be used for condition monitoring of the electro energy devices. The framework will be validated by computer simulation and experimental studies to identify and monitor internal weak points of power semiconductor devices. In addition to electro energy devices, the research will provide enabling capabilities for modeling and diagnostics of other complex physical systems.
电能源设备(例如电池)在现代社会中发挥着重要作用,其广泛的应用涵盖交通、医疗保健、通信和可再生能源发电等各个领域。目前,评估此类设备运行时的寿命是一项极具挑战性的任务。因此,在关键任务和/或情况下,此类设备存在过早失效的巨大风险,从而导致安全问题和财务损失。目前,还没有通用、有效的方法来在线识别内部薄弱环节并监测不同电能设备在运行过程中的老化过程和健康状况。 该项目制定并演示了新的通用动态建模和系统识别方法,用于利用封装表面温度对电能设备的内部弱点进行低成本在线识别和状态监测。 该方法不会侵入设备或中断其操作。 这项研究的结果将增强实时、预测性的状态意识,并提高对电能设备老化和故障机制的理解,这将有助于设计更可靠的设备。 增强的状态意识和设计将大大提高安全性和可靠性,并降低使用电能设备的成本和财务风险。 该项目将为研究生和本科生提供跨学科研究培训,为K-12学生提供STEM教育,重点关注能源系统应用的动态系统建模和识别。该项目将为能源系统应用创建一个新的基于动态建模和系统识别的通用数学框架利用热特征对电能设备的内部弱点进行非侵入式在线识别和状态监测。 该框架通过测量封装表面温度估计的器件三维电热动力学的变化,对内部弱点的复杂老化过程提出了新的通用解释。 基于这种解释,将开发一种新的数学建模方法,通过高保真、基于物理的建模、具有可量化误差范围的自动模型降阶、在线参数识别来自适应地表征器件与老化相关的电热动力学。 -阶模型和高阶模型重建。 识别出的参数将包含有关内部薄弱点的位置、老化过程和健康状况的信息,因此可用于电能设备的状态监测。 该框架将通过计算机模拟和实验研究进行验证,以识别和监控功率半导体器件的内部弱点。 除了电能设备之外,该研究还将提供其他复杂物理系统的建模和诊断的支持能力。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Enhanced Hybrid Battery Model
- DOI:10.1109/tec.2019.2935700
- 发表时间:2019-12-01
- 期刊:
- 影响因子:4.9
- 作者:Kim, Taesic;Qiao, Wei;Qu, Liyan
- 通讯作者:Qu, Liyan
Enhanced Particle Filtering for Bearing Remaining Useful Life Prediction of Wind Turbine Drivetrain Gearboxes
- DOI:10.1109/tie.2018.2866057
- 发表时间:2019-06-01
- 期刊:
- 影响因子:7.7
- 作者:Cheng, Fangzhou;Qu, Liyan;Hao, Liwei
- 通讯作者:Hao, Liwei
Wind Turbine Drivetrain Gearbox Fault Diagnosis Using Information Fusion on Vibration and Current Signals
- DOI:10.1109/tim.2021.3083891
- 发表时间:2021
- 期刊:
- 影响因子:5.6
- 作者:Yayu Peng;W. Qiao;Fangzhou Cheng;Liyan Qu
- 通讯作者:Yayu Peng;W. Qiao;Fangzhou Cheng;Liyan Qu
Compressive Sensing-Based Missing-Data-Tolerant Fault Detection for Remote Condition Monitoring of Wind Turbines
- DOI:10.1109/tie.2021.3057039
- 发表时间:2022-02
- 期刊:
- 影响因子:7.7
- 作者:Yayu Peng;W. Qiao;Liyan Qu
- 通讯作者:Yayu Peng;W. Qiao;Liyan Qu
A High-Accuracy, Low-Order Thermal Model of SiC MOSFET Power Modules Extracted from Finite Element Analysis via Model Order Reduction
通过模型降阶从有限元分析中提取 SiC MOSFET 功率模块的高精度、低阶热模型
- DOI:10.1109/ecce.2019.8912839
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Entzminger, Cameron;Qiao, Wei;Qu, Liyan;Hudgins, Jerry L.
- 通讯作者:Hudgins, Jerry L.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Qiao其他文献
Responsible Eigenvalue Approach for Stability Analysis and Control Design of a Single-Delay Large-Scale System With Random Coupling Strengths
具有随机耦合强度的单延迟大规模系统的稳定性分析和控制设计的负责任特征值方法
- DOI:
10.1115/dscc2010-4082 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Wei Qiao;R. Sipahi - 通讯作者:
R. Sipahi
Transcription factor Klf9 controls bile acid reabsorption and enterohepatic circulation in mice via promoting intestinal Asbt expression
转录因子Klf9通过促进肠道Asbt表达控制小鼠胆汁酸重吸收和肠肝循环
- DOI:
10.1038/s41401-021-00850-x - 发表时间:
2022-02 - 期刊:
- 影响因子:8.2
- 作者:
Shuainan Liu;Man Liu;Min Zhang;Cui-Zhe Wang;Zhanqing Li;Chun-Yuan Du;Su-Fang Sheng;Wei Wang;Ya-Tong Fan;Jia-Ni Song;Jiaojiao Huang;Yue-Yao Feng;Wei Qiao;Yongshun Li;Lu Zhou;Jun Zhang;Yongsheng Chang - 通讯作者:
Yongsheng Chang
Effect of blood insulin level on postprandial hypotension in elderly people
血胰岛素水平对老年人餐后低血压的影响
- DOI:
10.1097/mbp.0000000000000450 - 发表时间:
2020 - 期刊:
- 影响因子:1.3
- 作者:
Hui Hu;Wei Qiao;Xi Wang;Yunyun Wang;Ying Li;Kejing Wang;S. Liu - 通讯作者:
S. Liu
Building reliable keypoint matches by a cascade of classifiers with resurrection mechanism
通过具有复活机制的级联分类器构建可靠的关键点匹配
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Jing Jing;Yong Li;Chunxiao Fan;Wei Qiao;Hongbin Jin - 通讯作者:
Hongbin Jin
Affinity Monolith-Integrated Microchips for Protein Purification and Concentration.
用于蛋白质纯化和浓缩的亲和整体集成微芯片。
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Changlu Gao;Xiuhua Sun;Huaixin Wang;Wei Qiao;Bo Hu - 通讯作者:
Bo Hu
Wei Qiao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei Qiao', 18)}}的其他基金
PFI:AIR - TT: Self-X Smart Battery
PFI:AIR - TT: Self-X 智能电池
- 批准号:
1414393 - 财政年份:2014
- 资助金额:
$ 33.79万 - 项目类别:
Standard Grant
Cognitive Prediction-Enabled Online Intelligent Fault Diagnosis and Prognosis for Wind Energy Systems
支持认知预测的风能系统在线智能故障诊断和预测
- 批准号:
1308045 - 财政年份:2013
- 资助金额:
$ 33.79万 - 项目类别:
Standard Grant
CAREER: Stochastic Optimization and Coordinating Control for the Next-Generation Electric Power System with Significant Wind Penetration
职业:具有显着风穿透力的下一代电力系统的随机优化和协调控制
- 批准号:
0954938 - 财政年份:2010
- 资助金额:
$ 33.79万 - 项目类别:
Standard Grant
Intelligent Optimal Mechanical Sensorless Control of Variable-Speed Wind Energy Systems Considering System Uncertainties
考虑系统不确定性的变速风能系统智能最优机械无传感器控制
- 批准号:
0901218 - 财政年份:2009
- 资助金额:
$ 33.79万 - 项目类别:
Standard Grant
Student and Junior Faculty Travel Support for the first IEEE Symposium on Power Electronics and Machines in Wind Applications (PEMWA 2009). To Be Held in Nebraska, on June 24-26,
为第一届 IEEE 风力应用电力电子和机器研讨会 (PEMWA 2009) 的学生和初级教师提供差旅支持。
- 批准号:
0921141 - 财政年份:2009
- 资助金额:
$ 33.79万 - 项目类别:
Standard Grant
相似国自然基金
无监督非侵入式工业负荷在线监测方法研究
- 批准号:52307133
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
超高速动车组传动系统机电耦合作用机制与非侵入式振动监测方法
- 批准号:52305070
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
电力电子变换器功率模块老化失效的非侵入式检测理论与方法研究
- 批准号:52377193
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
高分辨青光眼指标的非侵入式长期监测研究
- 批准号:62301045
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于长程相关性模型和自适应扫描的非侵入式散射成像技术
- 批准号:12374271
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
EAGER: Nonintrusive Engagement and Posture Detection in Virtual Classroom Environments
EAGER:虚拟教室环境中的非侵入式参与和姿势检测
- 批准号:
2333611 - 财政年份:2023
- 资助金额:
$ 33.79万 - 项目类别:
Standard Grant
非線形確率システムにおける状態変化・構造変化の検出及びそのリスク管理
非线性随机系统状态变化和结构变化的检测及其风险管理
- 批准号:
18K04626 - 财政年份:2018
- 资助金额:
$ 33.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A first-principles study on the de Haas van Alphen effect in the superconducting vortex state
超导涡旋态德哈斯·范阿尔芬效应的第一性原理研究
- 批准号:
18K03510 - 财政年份:2018
- 资助金额:
$ 33.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Nonintrusive Fault Monitoring (NiFM)
非侵入式故障监控 (NiFM)
- 批准号:
132701 - 财政年份:2017
- 资助金额:
$ 33.79万 - 项目类别:
Feasibility Studies
A Novel Nonintrusive Multimodal Biometric System Using Online Social Network Based User Profiles
使用基于在线社交网络的用户配置文件的新型非侵入式多模式生物识别系统
- 批准号:
469020-2014 - 财政年份:2017
- 资助金额:
$ 33.79万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years