Modeling, Identification, and Estimation of Distributed Parameter Systems Using Mobile Sensor Networks

使用移动传感器网络对分布式参数系统进行建模、识别和估计

基本信息

  • 批准号:
    1663073
  • 负责人:
  • 金额:
    $ 35.83万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2019-03-31
  • 项目状态:
    已结题

项目摘要

This project will formulate a general purpose mathematical framework using mobile sensor networks (MSNs) that will allow an efficient and accurate prediction of information about behavior of complex real world systems such as weather forecasting, wildfire control, disaster recovery, explosive materials detection, etc. Such systems are known to be distributed parameter systems (DPS) and modeling of such systems and accurately predicting their behavior in real-time is highly complex and computationally challenging. The current state-of-the-art techniques use static sensor network to help obtain solutions from complex mathematical models which are often inaccurate and cannot provide timely information. The mobility and adaptability of MSNs make them great candidates for overcoming these challenges. This project will develop a unified framework for modeling, identifying, estimating and predicting behavior of such distributed parameter systems. The project will also develop a strongly integrated research, educational, and outreach program by providing graduate students with interdisciplinary and challenging research experiences, by providing undergraduate students with the opportunity of early involvement in research activities through algorithm development and test-bed experiments, and by motivating K-12 students by giving them hands-on experiences through university's Engineering Ambassadors(EA) program.The outcomes of this project are expected to advance the modeling, identification, and state estimation techniques for distributed parameter systems, offer comprehensive scientific understanding of the connections between DPS and mobile sensor networks, and contribute to generic engineering principles for designing cooperative control and distributed sensing strategies for mobile sensor networks. In particular, the work will: develop novel approaches for online parameter identification and state estimation of DPS using mobile sensor networks with reduced computational and communication cost compared to existing methods developed for static sensor networks; determine information-rich and energy-saving optimal trajectories of mobile sensor networks moving in DPS for simultaneously system identification and state prediction; and design a multi-robot test-bed with controllable advection-diffusion fields for the validation of the strategies, and conduct field experiments to test the strategies under realistic uncertainties and variations. The project also offers great educational opportunities for graduate, undergraduate, as well as K-12 students.
该项目将使用移动传感器网络(MSN)制定一个通用数学框架,该框架将允许对复杂现实世界系统的行为(例如天气预测,野火控制,灾难恢复,爆炸性材料检测等)进行有效,准确的预测。已知这些系统被公认为是分布的参数(DPS),并具有挑战性和准确的挑战和精确的行为。当前的最新技术使用静态传感器网络来帮助从通常不准确且无法提供及时信息的复杂数学模型中获取解决方案。 MSN的流动性和适应性使它们成为克服这些挑战的绝佳候选人。该项目将开发一个统一的框架,用于建模,识别,估计和预测此类分布式参数系统的行为。 The project will also develop a strongly integrated research, educational, and outreach program by providing graduate students with interdisciplinary and challenging research experiences, by providing undergraduate students with the opportunity of early involvement in research activities through algorithm development and test-bed experiments, and by motivating K-12 students by giving them hands-on experiences through university's Engineering Ambassadors(EA) program.The outcomes of this project are expected to advance the modeling,用于分布式参数系统的识别和状态估计技术,对DPS和移动传感器网络之间的联系提供了全面的科学理解,并为设计合作控制和移动传感器网络的分布式传感策略做出了一般工程原则。特别是,这项工作将:与针对静态传感器网络开发的现有方法相比,使用移动传感器网络使用移动传感器网络开发了在线参数识别和DPS的状态估计的新颖方法;确定信息丰富和节能的最佳移动传感器网络的最佳轨迹,以同时进行系统识别和状态预测;并设计一个具有可控的对流扩散字段的多机器人测试床,以验证策略,并进行现场实验,以测试现实的不确定性和变化下的策略。该项目还为研究生,本科生以及K-12学生提供了很大的教育机会。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cooperative identification of advection–diffusion processes with spatially varying coefficients based on a multi-model structure
  • DOI:
    10.1080/23335777.2017.1415979
  • 发表时间:
    2017-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jie You;Wencen Wu
  • 通讯作者:
    Jie You;Wencen Wu
Geometric Reinforcement Learning Based Path Planning for Mobile Sensor Networks in Advection-Diffusion Field Reconstruction
平流扩散场重建中基于几何强化学习的移动传感器网络路径规划
A Gradient-Free Three-Dimensional Source Seeking Strategy With Robustness Analysis
  • DOI:
    10.1109/tac.2018.2882172
  • 发表时间:
    2019-08
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Said Al-Abri;Wencen Wu;Fumin Zhang
  • 通讯作者:
    Said Al-Abri;Wencen Wu;Fumin Zhang
Sensing-motion co-planning for reconstructing a spatially distributed field using a mobile sensor network
使用移动传感器网络重建空间分布场的传感-运动协同规划
共 4 条
  • 1
前往

Wencen Wu其他文献

Experimental validation of diffusion coefficient identification using a multi-robot system
使用多机器人系统识别扩散系数的实验验证
Target localization: Energy-information trade-offs using mobile sensor networks
目标定位:使用移动传感器网络进行能源信息权衡
Cooperative filtering for parameter identification of diffusion processes
用于扩散过程参数识别的协同过滤
An Adaptive Luenberger Observer for Speed-Sensorless Estimation of Induction Machines
用于感应电机无速度传感器估计的自适应 Luenberger 观测器
Cooperative parameter identification of advection-diffusion processes using a mobile sensor network
使用移动传感器网络的平流扩散过程的协同参数识别
共 9 条
  • 1
  • 2
前往

Wencen Wu的其他基金

Modeling, Identification, and Estimation of Distributed Parameter Systems Using Mobile Sensor Networks
使用移动传感器网络对分布式参数系统进行建模、识别和估计
  • 批准号:
    1917300
    1917300
  • 财政年份:
    2018
  • 资助金额:
    $ 35.83万
    $ 35.83万
  • 项目类别:
    Standard Grant
    Standard Grant
CPS: Synergy: Collaborative Research: Towards Effective and Efficient Sensing-Motion Co-Design of Swarming Cyber-Physical Systems
CPS:协同:协作研究:实现集群网络物理系统的有效和高效的传感-运动协同设计
  • 批准号:
    1446461
    1446461
  • 财政年份:
    2015
  • 资助金额:
    $ 35.83万
    $ 35.83万
  • 项目类别:
    Standard Grant
    Standard Grant

相似国自然基金

基于生长轨迹的儿童性早熟风险因素早期识别与临床鉴别诊断的纵向数据预测模型研究
  • 批准号:
    82373691
  • 批准年份:
    2023
  • 资助金额:
    47 万元
  • 项目类别:
    面上项目
脊髓新鉴定SNAPR神经元相关环路介导SCS电刺激抑制恶性瘙痒
  • 批准号:
    82371478
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
免扩增核酸定量检测技术研究及其在发热儿童细菌与病毒性感染快速鉴别中的应用
  • 批准号:
    22304040
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于血浆cfDNA甲基化的肺结节良恶性鉴别及早期肺癌SBRT预后预测的研究
  • 批准号:
    82303577
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向多中心脑影像的脑功能异常模式鉴别分析方法研究
  • 批准号:
    62306327
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Semiparametric Inference for Psychiatric Neuroimaging
精神病学神经影像的半参数推理
  • 批准号:
    10652980
    10652980
  • 财政年份:
    2020
  • 资助金额:
    $ 35.83万
    $ 35.83万
  • 项目类别:
Administrative Core_Pizzagalli
行政核心_Pizzagalli
  • 批准号:
    10601122
    10601122
  • 财政年份:
    2020
  • 资助金额:
    $ 35.83万
    $ 35.83万
  • 项目类别:
Modeling, Identification, and Estimation of Distributed Parameter Systems Using Mobile Sensor Networks
使用移动传感器网络对分布式参数系统进行建模、识别和估计
  • 批准号:
    1917300
    1917300
  • 财政年份:
    2018
  • 资助金额:
    $ 35.83万
    $ 35.83万
  • 项目类别:
    Standard Grant
    Standard Grant
Modeling of dynamic network based on noise information estimation: Identification of errors-in-variables models in closed-loop
基于噪声信息估计的动态网络建模:闭环变量模型误差识别
  • 批准号:
    16K18127
    16K18127
  • 财政年份:
    2016
  • 资助金额:
    $ 35.83万
    $ 35.83万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
    Grant-in-Aid for Young Scientists (B)
Modeling, extension, and parameter identification/estimation of vocal and musical instrument systems
声乐和乐器系统的建模、扩展和参数识别/估计
  • 批准号:
    312820-2010
    312820-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 35.83万
    $ 35.83万
  • 项目类别:
    Discovery Grants Program - Individual
    Discovery Grants Program - Individual