US Ignite: Collaborative Research: Focus Area 1: Rapid and Resilient Critical Data Sourcing for Public Safety and Emergency Response

US Ignite:合作研究:重点领域 1:公共安全和应急响应的快速且有弹性的关键数据采购

基本信息

  • 批准号:
    1647217
  • 负责人:
  • 金额:
    $ 38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-02-01 至 2021-01-31
  • 项目状态:
    已结题

项目摘要

In public safety and emergency response, the key for a successful recovery is on-time and reliable communication between the people reporting the incident and the emergency management authorities. Such capability should further be coupled with rapid collection of eyewitness data for successful investigation of criminals or root causes of the incident. Recently, crowd sourcing applications have proven to be promising tools to gather information with tremendous participation from the crowd. In emergency scenarios, however, such crowd sourcing solutions should be robust and resilient as the network could be congested or the underlying cellular infrastructure is damaged or temporarily lost. Moreover, an agile analysis of the massive amount of data collected should be supported with necessary equipment so that time-sensitive feedback could be provided and shared between different agencies. This project addresses these challenges by introducing a novel framework that integrates various technologies and tools for modeling and operation of large-scale crowd sourcing-based emergency response systems.The project enhances the current systems by integrating a cloud-based rapid processing of collected data and augmenting the system by device-to-device (D2D) communications and network slicing. The project's integrated research and education plan investigates (i) large-scale critical data collection via a mobile app and management process to be used in the investigation of an emergency incident, (ii) near-real-time processing of the gathered heterogeneous data in a cloud computing environment for critical information extraction such as faces of people in the videos and photos, (iii) adoption of D2D-based communication as a complementary component to improve system resilience in case of congestion's and failures in network infrastructure, and (iv) utilization of Global Environment for Network Innovations (GENI) network slices as dedicated bandwidth for time-sensitive communication in emergency response as well as to enhance wide area resilience of the system. The project paves the way towards emergency preparedness which is a national priority; and supports progress toward smart and connected communities. The anticipated enhancements expedite the response to emergency cases, save people's lives and reduce public safety operation costs.
在公共安全和应急响应中,成功恢复的关键是报告事件的人员与应​​急管理部门之间及时、可靠的沟通。这种能力还应与快速收集目击者数据相结合,以成功调查罪犯或事件的根本原因。最近,众包应用程序已被证明是一种很有前途的工具,可以通过人群的大量参与来收集信息。然而,在紧急情况下,此类众包解决方案应该是稳健且有弹性的,因为网络可能会拥堵或底层蜂窝基础设施被损坏或暂时丢失。此外,应对收集的大量数据进行敏捷分析,并辅之以必要的设备,以便能够提供及时的反馈并在不同机构之间共享。该项目通过引入一种新颖的框架来解决这些挑战,该框架集成了各种技术和工具,用于对基于大规模众包的应急响应系统进行建模和操作。该项目通过集成基于云的快速处理收集的数据和通过设备到设备(D2D)通信和网络切片增强系统。该项目的综合研究和教育计划调查(i)通过移动应用程序和管理流程进行大规模关键数据收集,用于紧急事件的调查,(ii)对收集到的异构数据进行近实时处理用于提取关键信息(例如视频和照片中的人脸)的云计算环境,(iii) 采用基于 D2D 的通信作为补充组件,以提高系统在网络基础设施拥塞和故障时的恢复能力,以及 (iv)利用全球环境进行网络创新(GENI)网络切片作为紧急响应中时间敏感通信的专用带宽,并增强系统的广域恢复能力。该项目为国家优先事项的应急准备铺平了道路;并支持智能互联社区的进步。预期的增强功能将加快对紧急情况的响应,挽救人们的生命并降低公共安全运营成本。

项目成果

期刊论文数量(30)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
User satisfaction aware maximum utility task assignment in mobile crowdsensing
移动群智感知中的用户满意度感知最大效用任务分配
  • DOI:
    10.1016/j.comnet.2020.107156
  • 发表时间:
    2020-05-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    F. Yucel;E. Bulut
  • 通讯作者:
    E. Bulut
Is Crowdcharging Possible?
众筹可以吗?
Time-dependent Stable Task Assignment in Participatory Mobile Crowdsensing
参与式移动群智感知中的时间相关稳定任务分配
Deep Self-Organizing Maps for Visual Data Mining
用于视觉数据挖掘的深度自组织映射
Trajectory Optimization in UAV-Assisted Cellular Networks under Mission Duration Constraint
任务持续时间约束下无人机辅助蜂窝网络的轨迹优化
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eyuphan Bulut其他文献

Energy-Efficient Location Services for Mobile Ad hoc Networks
移动自组织网络的节能定位服务
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    王子健;Eyuphan Bulut;Boleslaw K. Szymanski
  • 通讯作者:
    Boleslaw K. Szymanski
2020 IEEE International Conference on Pervasive Computing and Communications Workshops, PerCom Workshops 2020, Austin, TX, USA, March 23-27, 2020
2020 IEEE 国际普适计算和通信研讨会研讨会,PerCom Workshops 2020,美国德克萨斯州奥斯汀,2020 年 3 月 23-27 日
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuan Lai;Gonzalo J. Martinez;Stephen M. Mattingly;Shayan Mirjafari;Subigya Nepal;Andrew T Campbell;A. Dey;Aaron D. Striegel;Marco Jansen;Fatjon Seraj;Wei Wang;P. Havinga;Kaijie Zhang;Zhiwen Yu;Dong Zhang;Zhu Wang;Bin Guo;Julian Graf;Katrin Neubauer;Sebastian Fischer;Rudolf Hackenberg;Elliott Wen;Gerald Weber;Javier Rojo;Daniel Flores;J. García;J. M. Murillo;Javier Berrocal;Mingyu Hou;Tianyu Kang;Li Guo;Edison Thomaz;Beichen Yang;Min Sun;Xiaoyan Hong;Xiaoming Guo;P. Barsocchi;A. Crivello;Michele Girolami;Fabio Mavilia;Vivek Chandel;Shivam Singhal;Avik Ghose;Tetsushi Matsuda;Toru Inada;Susumu Ishihara;Luay Alawneh;Belal Mohsen;Mohammad Al;Ahmed S. Shatnawi;Mahmoud Al;N. B. Rabah;Eoin Brophy;W. Muehlhausen;A. Smeaton;Tomás E. Ward;S. Maskey;S. Badsha;Shamik Sengupta;Ibrahim Khalil;Stanisław Saganowski;Anna Dutkowiak;A. Dziadek;Maciej Dziezyc;Joanna Komoszynska;Weronika Michalska;Adam G. Polak;Michal Ujma;Przemysław Kazienko;Nurullah Karakoç;Anna Scaglione;Fatemeh Mirzaei;Jonathan Lam;Roberto Manduchi;R. K. Ramakrishnan;R. Gavas;Lalit Venkata Subramaninan Viraraghavan;Kumar Hissaria;Arpan Pal;P. Balamuralidhar;S. Ditton;Ali Tekeoglu;K. Bekiroglu;Seshadhri Srinivasan;E. Tonkin;Miquel Perello Nieto;Haixia Bi;Antonis Vafeas;Yuri Tani;M. Garcia;A. Konios;M. A. Mustafa;C. Nugent;G. Morrison;Noah Sieck;Cameron Calpin;Mohammad S. Almalag;M. M. Sandhu;Kai Geissdoerfer;Sara Khalifa;Raja Jurdak;Marius Portmann;Brano Kusy;Alwyn Burger;Chao Qian;Gregor Schiele;Domenik Helms;Peter Zdankin;Marian Waltereit;V. Matkovic;Torben Weis;Syafiq Al Atiiq;Christian Gehrmann;Jae Woong Lee;Sumi Helal;Mathias Mormul;Christoph Stach;L. Krupp;G. Bahle;Agnes Gruenerbl;P. Lukowicz;Nicholas Handaja;Brent Lagesse;Clémentine Gritti;Dennis Przytarski;Bernhard Mitschang;Yeongjun Jeon;Kukho Heo;Soon Ju Kang;Sandeep Biplav Srivastava;Singh Sandha;Vaskar Raychoudhury;Sukanya Randhawa;V. Kapoor;Anmol Agrawal;Young D. Kwon;Kirill A. Shatilov;Lik;Serkan Kumyol;Kit;Yui;Pan Hui;Brittany Lewis;Joshua Hebert;Krishna Venkatasubramanian;Matthew Provost;Kelly Charlebois;Kristina Yordanova;Albert Hein;T. Kirste;Lien;Jun;Wei;Casper Van Gheluwe;I. Šemanjski;Suzanne Hendrikse;S. Gautama;Furqan Jameel;Zheng Chang;Riku Jäntti;Sergio Laso;M. Linaje;Ikram Ullah;N. Meratnia;Steven M. Hernandez;Eyuphan Bulut;Amiah Gooding;Matthew Martin;Maxwell Minard;Smruthi Sandhanam;Travis Stanger;Yana Alexandrova;Ashfaq Khokhar;Goce Trajcevski;Utsav Goswami;Kevin Wang;Gabriel Nguyen;Federico Montori;L. Bedogni;Gianluca Iselli;L. Bononi;Saptaparni Kumar;Haochen Pan;Roger Wang;Lewis Tseng;K. Hirayama;S. Saiki;Masahide Nakamura;Kiyoshi Yasuda;Samy El;Ismail Arai;Ahmad Salman;B. B. Park;Yuya Sano;Yuito Sugata;Teruhiro Mizumoto;H. Suwa;K. Yasumoto;P. Kouris;Marietta Sionti;Chrysovalantis Korfitis;Stella Markantonatou;Naima Khan;Nirmalya Roy;D. Jaiswal;D. Chatterjee;Ramesh Kumar;Ana Cristina Franco;Da Silva;Pascal Hirmer;Jan Schneider;Seda Ulusal;Matheus Tavares;Tomokazu Matsui;Kosei Onishi;Shinya Misaki;Manato Fujimoto;Hayata Satake;Yuki Kobayashi;Ryotaro Tani;Hiroshi Shigeno;Avijoy Chakma;Abu Zaher;Md Faridee;M Sajjad Hossain;Cleo Forman;Pablo Thiel;Raymond Ptucha;Miguel Dominguez;Cecilia Ovesdotter Alm;S. Mozgai;Arno Hartholt;Albert Rizzo
  • 通讯作者:
    Albert Rizzo

Eyuphan Bulut的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eyuphan Bulut', 18)}}的其他基金

NeTS: Small: Collaborative Research: Improving Spectrum Efficiency for Hyper-Dense IoT Networks
NeTS:小型:协作研究:提高超密集物联网网络的频谱效率
  • 批准号:
    1815603
  • 财政年份:
    2018
  • 资助金额:
    $ 38万
  • 项目类别:
    Standard Grant

相似国自然基金

高层建筑外墙保温材料环境暴露自然老化后飞火点燃机理及模型研究
  • 批准号:
    52376132
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向刻蚀工艺的脉冲调制甚高频容性耦合等离子体的点燃物理
  • 批准号:
    12275043
  • 批准年份:
    2022
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
激光诱导空气和薄膜等离子体点燃机理及损伤误判消除方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
低温压缩氢射流及点燃的实验和理论模型研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
缸内直喷甲醇的重型点燃式天然气双燃料发动机协同燃烧调控机理研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

US Ignite: Collaborative Research: Focus Area 1: Fiber Network for Smart Mapping, Monitoring and Managing Underground Urban Infrastructure
US Ignite:合作研究:重点领域 1:用于智能测绘、监控和管理地下城市基础设施的光纤网络
  • 批准号:
    1647095
  • 财政年份:
    2017
  • 资助金额:
    $ 38万
  • 项目类别:
    Standard Grant
US Ignite: Collaborative Research: Focus Area 1: Fiber Network for Mapping, Monitoring and Managing Underground Urban Infrastructure
US Ignite:合作研究:重点领域 1:用于测绘、监测和管理地下城市基础设施的光纤网络
  • 批准号:
    1647175
  • 财政年份:
    2017
  • 资助金额:
    $ 38万
  • 项目类别:
    Standard Grant
US Ignite: Focus Area 1: Predictable Wireless Networking and Collaborative 3D Reconstruction for Real-Time Augmented Vision
US Ignite:重点领域 1:用于实时增强视觉的可预测无线网络和协作 3D 重建
  • 批准号:
    1821962
  • 财政年份:
    2017
  • 资助金额:
    $ 38万
  • 项目类别:
    Standard Grant
US Ignite: Collaborative Research: Focus Area 2: Resilient Virtual Path Management for Scalable Data-intensive Computing at Network-Edges
US Ignite:协作研究:重点领域 2:网络边缘可扩展数据密集型计算的弹性虚拟路径管理
  • 批准号:
    1647182
  • 财政年份:
    2017
  • 资助金额:
    $ 38万
  • 项目类别:
    Standard Grant
US Ignite: Collaborative Research: Focus Area 2: Resilient Virtual Path Management for Scalable Data-intensive Computing at Network-Edges
US Ignite:协作研究:重点领域 2:网络边缘可扩展数据密集型计算的弹性虚拟路径管理
  • 批准号:
    1647084
  • 财政年份:
    2017
  • 资助金额:
    $ 38万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了