CM: Machine-Learning Driven Decision Support in Design for Manufacturability

CM:可制造性设计中机器学习驱动的决策支持

基本信息

  • 批准号:
    1644441
  • 负责人:
  • 金额:
    $ 41.52万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

Traditional design and manufacturing relies on the experience and training of the designer to create a component with manufacturable features. However, even after careful design, the as-manufactured part might differ from the as-designed part. In addition, the inclusion of certain features might significantly increase the manufacturing cost. For example, the inclusion of a thin feature might necessitate the use of complex jigs or fixtures to prevent the flexing of the part during machining, which increases manufacturing time and cost. This problem is also encountered in additive manufacturing, where there is no body of knowledge regarding design rules that will reduce manufacturing defects. This project aims to address this challenge by developing computer-aided design tools that can identify difficult-to-manufacture features using machine learning. The process of identification of the source of infeasibility in manufacturing in a complex part is a challenging task, even for an experienced designer. Therefore, the use of machine learning could potentially play a critical role by detecting non-intuitive patterns from examples of feasible and infeasible parts, and identifying the source of infeasibility. The results of the machine-learning framework will be used to build a decision support framework that can interactively identify manufacturability concerns during the design process and present design modifications interactively to the designer. Finally, the multidisciplinary components of the project will be integrated into a larger educational effort to offer students a solid foundation in the critical interdisciplinary area of cyber-enabled manufacturing.The objective of this project is to create a design for manufacturability tool that uses machine learning to identify difficult to machine or manufacture features in a computer-aided design model and suggest changes to the non-manufacturable features. The novelty of this research is the use of machine learning in a computer-aided design and manufacturing environment, making it accessible to designers using a familiar design interface. The research team will develop tools for loading existing models of parts and performing virtual machining simulations to create a digital voxelized representation of the as-manufactured part. The original as-designed part will also be converted to a voxelized representation that will be suitable for machine learning. The machine-learning framework will be trained using multiple machining simulations and will classify feasible and infeasible designs by learning from positive and negative examples. Furthermore, the machine-learning framework will be used to present alternative feasible designs to the designer.
传统的设计和制造依赖于设计师的经验和培训来创建具有可制造特征的组件。然而,即使经过精心设计,制造的零件也可能与设计的零件不同。此外,包含某些功能可能会显着增加制造成本。例如,包含薄特征可能需要使用复杂的夹具或固定装置来防止零件在加工过程中弯曲,这会增加制造时间和成本。在增材制造中也会遇到这个问题,因为没有关于可减少制造缺陷的设计规则的知识体系。该项目旨在通过开发计算机辅助设计工具来应对这一挑战,这些工具可以使用机器学习识别难以制造的特征。即使对于经验丰富的设计师来说,识别复杂零件制造中的不可行性根源的过程也是一项具有挑战性的任务。因此,机器学习的使用可以通过从可行和不可行部分的示例中检测非直观模式并识别不可行的根源来发挥关键作用。机器学习框架的结果将用于构建决策支持框架,该框架可以在设计过程中交互式地识别可制造性问题,并向设计者交互式地呈现设计修改。最后,该项目的多学科组成部分将被整合到更大的教育工作中,为学生在网络化制造的关键跨学科领域打下坚实的基础。该项目的目标是创建一个使用机器学习的可制造性设计工具识别计算机辅助设计模型中难以加工或制造的特征,并建议对不可制造的特征进行更改。这项研究的新颖之处在于在计算机辅助设计和制造环境中使用机器学习,使设计人员可以使用熟悉的设计界面进行访问。研究团队将开发用于加载现有零件模型并执行虚拟加工模拟的工具,以创建制造零件的数字体素化表示。原始设计部分也将转换为适合机器学习的体素化表示。机器学习框架将使用多个加工模拟进行训练,并通过学习正例和反例来对可行和不可行的设计进行分类。此外,机器学习框架将用于向设计者提供替代的可行设计。

项目成果

期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Scalable adaptive PDE solvers in arbitrary domains
任意域中的可扩展自适应 PDE 求解器
  • DOI:
    10.1145/3458817.3476220
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Saurabh, Kumar;Ishii, Masado;Fernando, Milinda;Gao, Boshun;Tan, Kendrick;Hsu, Ming;Krishnamurthy, Adarsh;Sundar, Hari;Ganapathysubramanian, Baskar
  • 通讯作者:
    Ganapathysubramanian, Baskar
Direct 3D printing of multi-level voxel models
多层次体素模型的直接3D打印
  • DOI:
    10.1016/j.addma.2021.101929
  • 发表时间:
    2021-04-01
  • 期刊:
  • 影响因子:
    11
  • 作者:
    Sambit Ghadai;Anushrut Jignasu;A. Krishnamurthy
  • 通讯作者:
    A. Krishnamurthy
Algorithmically-consistent deep learning frameworks for structural topology optimization
用于结构拓扑优化的算法一致的深度学习框架
  • DOI:
    10.1016/j.engappai.2021.104483
  • 发表时间:
    2020-12-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jaydeep Rade;Aditya Balu;Ethan Herron;Jay Pathak;Rishikesh Ranade;S. Sarkar;A. Krishnamurthy
  • 通讯作者:
    A. Krishnamurthy
Multi-resolution 3D CNN for learning multi-scale spatial features in CAD models
用于学习 CAD 模型中多尺度空间特征的多分辨率 3D CNN
  • DOI:
    10.1016/j.cagd.2021.102038
  • 发表时间:
    2021-11-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sambit Ghadai;Xian Yeow Lee;Aditya Balu;S. Sarkar;A. Krishnamurthy
  • 通讯作者:
    A. Krishnamurthy
AI Guided Measurement of Live Cells Using AFM
使用 AFM 进行 AI 引导的活细胞测量
  • DOI:
    10.1016/j.ifacol.2021.11.193
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jaydeep Rade;Juntao Zhang;S. Sarkar;A. Krishnamurthy;Juan Ren;A. Sarkar
  • 通讯作者:
    A. Sarkar
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Adarsh Krishnamurthy其他文献

Optimized GPU evaluation of arbitrary degree NURBS curves and surfaces
任意阶 NURBS 曲线和曲面的优化 GPU 评估
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Adarsh Krishnamurthy;Rahul Khardekar;Sara McMains
  • 通讯作者:
    Sara McMains

Adarsh Krishnamurthy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Adarsh Krishnamurthy', 18)}}的其他基金

EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347623
  • 财政年份:
    2024
  • 资助金额:
    $ 41.52万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
  • 批准号:
    2323716
  • 财政年份:
    2023
  • 资助金额:
    $ 41.52万
  • 项目类别:
    Standard Grant
CAREER: GPU-Accelerated Framework for Integrated Modeling and Biomechanics Simulations of Cardiac Systems
职业:用于心脏系统集成建模和生物力学模拟的 GPU 加速框架
  • 批准号:
    1750865
  • 财政年份:
    2018
  • 资助金额:
    $ 41.52万
  • 项目类别:
    Continuing Grant

相似国自然基金

通过机器学习和多模式验证聚焦新靶点ENHO/Adropin在系统性硬化症中的作用和机制研究
  • 批准号:
    82371818
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于机器学习开发更安全有效的有机磷阻燃剂的研究
  • 批准号:
    22306030
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
基于机器学习和经典电动力学研究中等尺寸金属纳米粒子的量子表面等离激元
  • 批准号:
    22373002
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
网络入侵检测机器学习模型多维鲁棒性评测方法研究
  • 批准号:
    62372126
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于cfDNA甲基化的机器学习模型在结直肠癌早期诊断中的研究
  • 批准号:
    82302640
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Developing a Clinical Decision Support Tool that Assesses Risk of Opioid Use Disorder Using Natural Language Processing, Machine Learning, and Social Determinants of Health from Clinical Notes
开发一种临床决策支持工具,利用自然语言处理、机器学习和临床记录中的健康社会决定因素来评估阿片类药物使用障碍的风险
  • 批准号:
    10352097
  • 财政年份:
    2022
  • 资助金额:
    $ 41.52万
  • 项目类别:
Developing a Clinical Decision Support Tool that Assesses Risk of Opioid Use Disorder Using Natural Language Processing, Machine Learning, and Social Determinants of Health from Clinical Notes
开发一种临床决策支持工具,利用自然语言处理、机器学习和临床记录中的健康社会决定因素来评估阿片类药物使用障碍的风险
  • 批准号:
    10675434
  • 财政年份:
    2022
  • 资助金额:
    $ 41.52万
  • 项目类别:
"Utilization of Machine Learning, Deep Learning, and Radiomics for the classification of sub-cm lung nodules in early cancer diagnosis"
“利用机器学习、深度学习和放射组学对早期癌症诊断中的亚厘米肺结节进行分类”
  • 批准号:
    428870
  • 财政年份:
    2019
  • 资助金额:
    $ 41.52万
  • 项目类别:
    Studentship Programs
Leveraging EHR Information to Measure Pressure Ulcer Risk in Veterans with SCI
利用 EHR 信息测量 SCI 退伍军人的压疮风险
  • 批准号:
    8750788
  • 财政年份:
    2013
  • 资助金额:
    $ 41.52万
  • 项目类别:
Clinical and Informatics Research in Medical Terminologies
医学术语的临床和信息学研究
  • 批准号:
    10268077
  • 财政年份:
  • 资助金额:
    $ 41.52万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了