CRII: SHF: Improving Programmability of GPGPU/NVRAM Integrated Systems with Holistic Architectural Support

CRII:SHF:通过整体架构支持提高 GPGPU/NVRAM 集成系统的可编程性

基本信息

  • 批准号:
    1657333
  • 负责人:
  • 金额:
    $ 17.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-02-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

In the era of big data, the industry faces growing demand for higher computing power and large-capacity high performance storage. GPGPU and NVRAM are two prominent technologies that will play the key role in the "Big Data revolution". This project, which holistically improves the programmability of GPGPU/NVRAM integrated systems, tackles the "programmability bottleneck" faced in GPGPU and NVRAM. It will make it easier to develop correct applications in GPGPU and NVRAM with high performance. As a result, the project will enforce the desire of applying GPGPUs and NVRAM into a wide-range of HPC and big data applications which could then gain hundreds times speedup while ensuring recoverability. Overall, the outcomes of this project will help ensure the sustainable performance to support the supercomputing/big data processing in science and engineering (e.g. finance, medical, biology, petroleum, aerospace, and geology). This project will also contribute to society through engaging high-school and undergraduate students from minority-serving institutions into research, attracting women and under-represented groups into graduate education, expanding the computer engineering curriculum with GPGPU/NVRAM architectures, disseminating research infrastructure for education and training, and collaborating with the industry.This research investigates synergetic approaches and techniques to holistically improve the programmability of GPGPU/NVRAM integrated systems with the following techniques: (1) Timestamp-Based GPU Coherence Protocol. It avoids storage overhead by not storing sharing states (e.g. Shared, Modified, Exclusive, etc.) and the list of sharers. It reduces the traffic overhead by not sending explicit invalidation messages. (2) Integration of Persistency and the Scoped-Synchronization. This research aims to study the new notion of Persistent Scope (PS) , which incorporates the necessary persistency semantics into the existing scoped-synchronization in GPGPU programming models. Efficient architecture design that fully decouples consistency and persistency will be explored. (3) Data Sharing-Aware CTA Scheduler and Cache Management. This research plans to investigate a sharing-aware CTA scheduler that attempts to assign CTAs with data sharing to the same SM to improve temporal and spatial locality.
在大数据时代,该行业面临着对更高计算能力和大容量高性能存储的需求不断增长。 GPGPU和NVRAM是两种杰出的技术,它们将在“大数据革命”中起关键作用。该项目从整体上改善了GPGPU/NVRAM集成系统的可编程性,可以​​解决GPGPU和NVRAM中面临的“可编程性瓶颈”。这将使以高性能在GPGPU和NVRAM中开发正确的应用程序变得更加容易。结果,该项目将实施将GPGPU和NVRAM应用于大型HPC和大数据应用程序中的愿望,然后可以在确保可恢复性的同时获得数百倍的速度。总体而言,该项目的结果将有助于确保可持续绩效以支持科学和工程学中的超级计算/大数据处理(例如金融,医学,生物学,石油,航空航天和地质学)。该项目还将通过吸引来自少数派服务机构的高中生和本科生来为社会做出贡献GPGPU/NVRAM集成系统具有以下技术的可编程性:(1)基于时间戳的GPU相干协议。它通过不存储共享状态(例如共享,修改,独家等)和共享者列表来避免存储空间。它通过不发送明确的无效消息来减少开销的流量。 (2)持久性和范围同步的整合。这项研究旨在研究持久范围(PS)的新概念,该概念将必要的持久语义纳入GPGPU编程模型中现有的范围同步。 将探索充分破坏一致性和持久性的有效体系结构设计。 (3)数据共享感知的CTA调度程序和缓存管理。这项研究计划调查一种共享感知的CTA调度程序,该调度程序试图将具有数据共享的CTA分配给同一SM,以改善时间和空间位置。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xuehai Qian其他文献

RobustState: Boosting Fidelity of Quantum State Preparation via Noise-Aware Variational Training
RobustState:通过噪声感知变分训练提高量子态准备的保真度
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hanrui Wang;Yilian Liu;Pengyu Liu;Jiaqi Gu;Zi;Zhiding Liang;Jinglei Cheng;Yongshan Ding;Xuehai Qian;Yiyu Shi;David Z. Pan;Frederic T. Chong;Song Han
  • 通讯作者:
    Song Han
Graph Transformer for Quantum Circuit Reliability Prediction
用于量子电路可靠性预测的图形变压器
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hanrui Wang;Pengyu Liu;Jinglei Cheng;Zhiding Liang;Jiaqi Gu;Zi;Yongshan Ding;Weiwen Jiang;Yiyu Shi;Xuehai Qian;D. Pan;F. Chong;Song Han
  • 通讯作者:
    Song Han
ReversiSpec: Reversible Coherence Protocol for Defending Transient Attacks
ReversiSpec:用于防御瞬态攻击的可逆一致性协议
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    You Wu;Xuehai Qian
  • 通讯作者:
    Xuehai Qian
Hybrid Gate-Pulse Model for Variational Quantum Algorithms
变分量子算法的混合门脉冲模型
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhiding Liang;Zhixin Song;Jinglei Cheng;Zichang He;Ji Liu;Hanrui Wang;Ruiyang Qin;Yiru Wang;Song Han;Xuehai Qian;Yiyu Shi
  • 通讯作者:
    Yiyu Shi
RCP: A Low-overhead Reversible Coherence Protocol
RCP:低开销可逆一致性协议
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    You Wu;Xuehai Qian
  • 通讯作者:
    Xuehai Qian

Xuehai Qian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xuehai Qian', 18)}}的其他基金

SPX: Collaborative Research: FASTLEAP: FPGA based compact Deep Learning Platform
SPX:协作研究:FASTLEAP:基于 FPGA 的紧凑型深度学习平台
  • 批准号:
    2333009
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
SHF: Small: High Performance Graph Pattern Mining System and Architecture
SHF:小型:高性能图模式挖掘系统和架构
  • 批准号:
    2333645
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CAREER: Algorithm-Centric High Performance Graph Processing
职业:以算法为中心的高性能图形处理
  • 批准号:
    2331038
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
SHF: Small: High Performance Graph Pattern Mining System and Architecture
SHF:小型:高性能图模式挖掘系统和架构
  • 批准号:
    2127543
  • 财政年份:
    2021
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: FASTLEAP: FPGA based compact Deep Learning Platform
SPX:协作研究:FASTLEAP:基于 FPGA 的紧凑型深度学习平台
  • 批准号:
    1919289
  • 财政年份:
    2019
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CAREER: Algorithm-Centric High Performance Graph Processing
职业:以算法为中心的高性能图形处理
  • 批准号:
    1750656
  • 财政年份:
    2018
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
SHF: Small: Accelerating Graph Processing with Vertically Integrated Programming Model, Runtime and Architecture
SHF:小型:利用垂直集成编程模型、运行时和架构加速图形处理
  • 批准号:
    1717754
  • 财政年份:
    2017
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CSR: Small: Collaborative Research: GAMBIT: Efficient Graph Processing on a Memristor-based Embedded Computing Platform
CSR:小型:协作研究:GAMBIT:基于忆阻器的嵌入式计算平台上的高效图形处理
  • 批准号:
    1717984
  • 财政年份:
    2017
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Student Travel Support for the 2017 International Conference on Architecture Support for Programming Languages and Operating Systems (ASPLOS)
2017 年编程语言和操作系统架构支持国际会议 (ASPLOS) 的学生旅行支持
  • 批准号:
    1720467
  • 财政年份:
    2017
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant

相似国自然基金

衔接蛋白SHF负向调控胶质母细胞瘤中EGFR/EGFRvIII再循环和稳定性的功能及机制研究
  • 批准号:
    82302939
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
EGFR/GRβ/Shf调控环路在胶质瘤中的作用机制研究
  • 批准号:
    81572468
  • 批准年份:
    2015
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SHF: Medium: Improving Software Quality by Automatically Reproducing Failures from Bug Reports
协作研究:SHF:中:通过自动重现错误报告中的故障来提高软件质量
  • 批准号:
    2403747
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
CRII: SHF: Model-Based Repair of Cyber-Physical Systems for Improving Resiliency
CRII:SHF:基于模型的网络物理系统修复以提高弹性
  • 批准号:
    2245853
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
SHF: Small: Improving Efficiency of Vision Transformers via Software-Hardware Co-Design and Acceleration
SHF:小型:通过软硬件协同设计和加速提高视觉变压器的效率
  • 批准号:
    2233893
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Improving Software Quality by Automatically Reproducing Failures from Bug Reports
协作研究:SHF:中:通过自动重现错误报告中的故障来提高软件质量
  • 批准号:
    2211453
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
SHF: Medium: Automated Software Engineering Techniques for Improving the Accessibility of Software
SHF:中:用于提高软件可访问性的自动化软件工程技术
  • 批准号:
    2211790
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了