CAREER: Interfacial Transformations in Ceramic Ion Conductors for Solid-State Batteries

职业:固态电池陶瓷离子导体的界面转变

基本信息

  • 批准号:
    1652471
  • 负责人:
  • 金额:
    $ 59.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-06-01 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

NON-TECHNICAL DESCRIPTION: Rechargeable solid-state batteries are attractive for electric vehicles and mobile applications because of their high energy density and their potential for improved safety compared to lithium-ion batteries. Despite the recent development of new ceramic materials for fast conduction of lithium ions, these battery systems are not yet commercialized. A major outstanding problem is that the solid-state interfaces between the ion-conducting ceramics and other materials within the battery are unstable, which leads to poor battery lifetimes. To address this challenge, this research uses novel experimental techniques to understand interface degradation processes in real time and to determine how to protect these interfaces from degradation. This fundamental understanding is critical for the creation of reliable, long-lasting solid-state batteries. This work is being performed by both graduate and undergraduate students, who are being trained in the science of materials for energy applications. Furthermore, this research includes an educational initiative in which new high school curriculum is being developed in collaboration with a high school teacher. The curriculum is focused on integrating materials and energy sciences in ways that are relevant to high school students' daily lives. These new learning tools will better prepare high school students from underrepresented groups for careers in science and engineering.TECHNICAL DETAILS: Interfacial transformations and instabilities at ceramic electrolyte interfaces in alkali metal-based solid-state batteries often cause increased impedance and reduced cycle life. The goal of this research is to understand the spatiotemporal evolution of structure, chemistry, and morphology at ceramic electrolyte interfaces within solid-state batteries, and to determine how these factors influence the ionic conductivity and stability of ceramic electrolytes. Multiple in situ experimental techniques are being used to probe nanoscale transformations at ceramic electrolyte/alkali metal interfaces before and during battery operation, and the influence of tailored protection layers on interfacial transformations are also being examined. By directly revealing nanoscale transformations at ceramic electrolyte interfaces for the first time, this research is helping to create the scientific foundation for stabilizing critical interfaces in next-generation solid-state batteries, thereby enabling superior new energy storage technologies.
非技术描述:与锂离子电池相比,由于其高能量密度和提高安全性的潜力,可充电固态电池对电动汽车和移动应用具有吸引力。尽管最近开发了用于快速传导锂离子的新陶瓷材料,但这些电池系统尚未商业化。一个主要的出色问题是,电池内的离子导电陶瓷与其他材料之间的固态接口不稳定,这导致电池寿命差。为了应对这一挑战,该研究使用新颖的实验技术实时了解界面降解过程,并确定如何保护这些界面免受降解。这种基本的理解对于创建可靠,持久的固态电池至关重要。这项工作是由研究生和本科生进行的,他们正在接受能源应用材料科学培训。此外,这项研究包括一项教育计划,其中与高中老师合作开发了新的高中课程。该课程的重点是以与高中学生的日常生活相关的方式整合材料和能源科学。这些新的学习工具将更好地从代表性不足的科学和工程职业中为高中生做好准备。技术详细信息:碱性金属固态电池中陶瓷电解质界面的界面转换和不稳定性通常会导致障碍和循环寿命的增加。这项研究的目的是了解固态电池内陶瓷电解质接口的结构,化学和形态的时空演化,并确定这些因素如何影响陶瓷电解质的离子电导率和稳定性。在电池运行之前和期间,正在使用多种原位实验技术来探测陶瓷电解质/碱金属界面的纳米级变换,并且还检查了量身定制的保护层对界面变换的影响。通过直接揭示陶瓷电解质界面的纳米级转换,这项研究正在帮助创建科学基础,以稳定下一代固态电池的关键接口,从而实现了卓越的新储能技术。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Avoiding Fracture in a Conversion Battery Material through Reaction with Larger Ions
  • DOI:
    10.1016/j.joule.2018.05.015
  • 发表时间:
    2018-09-19
  • 期刊:
  • 影响因子:
    39.8
  • 作者:
    Boebinger, Matthew G.;Yeh, David;McDowell, Matthew T.
  • 通讯作者:
    McDowell, Matthew T.
Toward High-Capacity Battery Anode Materials: Chemistry and Mechanics Intertwined
  • DOI:
    10.1021/acs.chemmater.0c02981
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    M. McDowell;Francisco Javier Quintero Cortes;Akila C. Thenuwara;J. Lewis
  • 通讯作者:
    M. McDowell;Francisco Javier Quintero Cortes;Akila C. Thenuwara;J. Lewis
How Metallic Protection Layers Extend the Lifetime of NASICON-Based Solid-State Lithium Batteries
  • DOI:
    10.1149/2.0032005jes
  • 发表时间:
    2019-10-11
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Cortes, Francisco Javier Quintero;Lewis, John A.;McDowell, Matthew T.
  • 通讯作者:
    McDowell, Matthew T.
Porous Metals from Chemical Dealloying for Solid-State Battery Anodes
  • DOI:
    10.1021/acs.chemmater.9b04992
  • 发表时间:
    2020-03-24
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Han, Sang Yun;Lewis, John A.;McDowell, Matthew T.
  • 通讯作者:
    McDowell, Matthew T.
Linking void and interphase evolution to electrochemistry in solid-state batteries using operando X-ray tomography
  • DOI:
    10.1038/s41563-020-00903-2
  • 发表时间:
    2021-01-28
  • 期刊:
  • 影响因子:
    41.2
  • 作者:
    Lewis, John A.;Cortes, Francisco Javier Quintero;McDowell, Matthew T.
  • 通讯作者:
    McDowell, Matthew T.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew McDowell其他文献

Matthew McDowell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew McDowell', 18)}}的其他基金

2023 Nanomaterials for Applications in Energy Technology Gordon Research Conference
2023年纳米材料在能源技术中的应用戈登研究会议
  • 批准号:
    2312079
  • 财政年份:
    2023
  • 资助金额:
    $ 59.92万
  • 项目类别:
    Standard Grant
CAS: Understanding the Role of External Constraint on Electrochemical (De)alloying Mechanisms
CAS:了解外部约束对电化学(脱)合金机制的作用
  • 批准号:
    2209202
  • 财政年份:
    2022
  • 资助金额:
    $ 59.92万
  • 项目类别:
    Standard Grant
2020 Professional Development Workshop in Ceramics, Baltimore, Maryland
2020 年陶瓷专业发展研讨会,马里兰州巴尔的摩
  • 批准号:
    2016293
  • 财政年份:
    2020
  • 资助金额:
    $ 59.92万
  • 项目类别:
    Standard Grant

相似国自然基金

基于π-d杂化策略的铁磁金属颗粒膜界面磁耦合及反常霍尔效应研究
  • 批准号:
    12304134
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高马赫数发动机密封界面液膜急变跨速汽化机理与型槽热平衡控制设计
  • 批准号:
    52375212
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
河口最大浑浊带对沉积物-水界面脱氮过程的影响机制
  • 批准号:
    42371104
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
超低温钠离子电池CEI膜原位构筑、界面输运机制及电化学性能研究
  • 批准号:
    52302260
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
深层碳酸盐岩酸蚀裂缝中反应-非线性两相流界面演化机制研究
  • 批准号:
    52304047
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Study of the fundamental role of interfacial mobilities during phase transformations in aluminium alloys
铝合金相变过程中界面迁移率基本作用的研究
  • 批准号:
    RGPIN-2018-04530
  • 财政年份:
    2022
  • 资助金额:
    $ 59.92万
  • 项目类别:
    Discovery Grants Program - Individual
Study of the fundamental role of interfacial mobilities during phase transformations in aluminium alloys
铝合金相变过程中界面迁移率基本作用的研究
  • 批准号:
    RGPIN-2018-04530
  • 财政年份:
    2021
  • 资助金额:
    $ 59.92万
  • 项目类别:
    Discovery Grants Program - Individual
NSF-BSF: Interfacial freezing and shape transformations in surfactant/particle-co-stabilized emulsions
NSF-BSF:表面活性剂/颗粒共稳定乳液中的界面冻结和形状转变
  • 批准号:
    2110611
  • 财政年份:
    2021
  • 资助金额:
    $ 59.92万
  • 项目类别:
    Standard Grant
CAREER: Elucidating the Interfacial Structure of Complex Solvents for Chemical Transformations
职业:阐明化学转化复杂溶剂的界面结构
  • 批准号:
    2045111
  • 财政年份:
    2021
  • 资助金额:
    $ 59.92万
  • 项目类别:
    Continuing Grant
Study of the fundamental role of interfacial mobilities during phase transformations in aluminium alloys
铝合金相变过程中界面迁移率基本作用的研究
  • 批准号:
    RGPIN-2018-04530
  • 财政年份:
    2020
  • 资助金额:
    $ 59.92万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了