Carnegie Mellon University Planning Grant: I/UCRC for Big Learning
卡内基梅隆大学规划补助金:I/UCRC for Big Learning
基本信息
- 批准号:1650485
- 负责人:
- 金额:$ 1.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-02-15 至 2018-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will study the feasibility of establishing the Center for Big Learning (CBL), as an NSF IUCRC. The mission of CBL is to develop novel large-scale deep learning algorithms, systems, and applications through unified and coordinated efforts in the CBL consortium. The vision of CBL is to develop intelligence algorithms towards intelligence-driven society. With the explosion of big data generated from natural systems, scientific experiments, engineered systems, and human activities, we need to develop intelligent algorithms and systems to facilitate our decision making with distilled insights automatically at scale. The proposed CBL center is a timely initiative as we move towards intelligence-enabled world of opportunities. The CBL consortium is expected to become the magnet of deep learning research and applications and attract leading researchers, entrepreneurs, IT and industry giants working together on accomplishing our mission and vision. This planning grant will lead to a successful Phase I proposal for the establishment of the Center for Big Learning at CMU with a solid consortium across multiple campuses and a large number of industry partners.CBL has the following broader impacts. (1) Making significant contributions and impacts to the deep learning community on pioneering research and applications to address a broad spectrum of real-world challenges. (2) Making significant contributions and impacts to promote products and services of industry in general and our members in particular. (3) Making significant contributions and impacts to the urgently-needed education of our next-generation talents with real-world settings and world-class mentors from both academia and industry. (4) Our meetings, forums, conferences, and planned training sessions will greatly promote and broaden the research and materialization of Deep Learning.Recent dramatic breakthroughs in deep learning (DL) and multi-model learning (e.g., image, video, speech, and text), hold great promise for making a big impact on many research areas, including computational biology, neuroscience, medical diagnosis, computer vision, data mining, and robotics. The key mission of CBL at CMU is to pioneer in large-scale deep learning (DL) algorithms, systems, and applications through unified and coordinated efforts in the CBL consortium via fusion of broad expertise from our large number of faculty members, students, and industry partners. The vision of CBL at CMU is to develop intelligent algorithm towards intelligence-driven society. CBL possesses the pioneering intellectual merit in the following key research themes:(1) Novel algorithms. This theme focuses on novel DL algorithms and architectures, such as deep neural networks, complex recurrent neural networks, brain-inspired components, optimization, deep reinforcement learning, and unsupervised learning.(2) Novel systems. We propose to develop novel architectures, resource management, and software frameworks for enabling large-scale DL platforms and applications on desktops, mobiles, clusters, and clouds.(3) Novel applications in health, mobile/IoT, and surveillance. During the planning phase, we will establish a solid center strategic plan, marketing plan, and the CBL consortium that consists of four academic sites and a large number of industrial members.
该项目将研究建立大学习中心(CBL)作为 NSF IUCRC 的可行性。 CBL的使命是通过CBL联盟的统一协调努力,开发新颖的大规模深度学习算法、系统和应用。 CBL的愿景是开发智能算法,迈向智能驱动的社会。随着自然系统、科学实验、工程系统和人类活动产生的大数据的爆炸式增长,我们需要开发智能算法和系统,以通过大规模自动提炼的见解来促进我们的决策。随着我们迈向充满机遇的智能世界,拟议的 CBL 中心是一项及时的举措。 CBL 联盟预计将成为深度学习研究和应用的磁石,吸引领先的研究人员、企业家、IT 和行业巨头共同努力实现我们的使命和愿景。这笔规划拨款将促成在卡耐基梅隆大学建立大学习中心的第一阶段提案的成功,该中心拥有跨多个校区和大量行业合作伙伴的坚实联盟。CBL 具有以下更广泛的影响。 (1) 在开拓性研究和应用方面为深度学习社区做出重大贡献和影响,以解决广泛的现实世界挑战。 (2) 为推广整个行业、特别是我们的会员的产品和服务做出重大贡献和影响。 (3)通过现实世界的环境和来自学术界和工业界的世界级导师,为我们迫切需要的下一代人才的教育做出重大贡献和影响。 (4) 我们的会议、论坛、会议和计划的培训课程将极大地促进和拓宽深度学习的研究和具体化。最近在深度学习(DL)和多模型学习(例如图像、视频、语音、和文本),有望对许多研究领域产生巨大影响,包括计算生物学、神经科学、医学诊断、计算机视觉、数据挖掘和机器人技术。卡内基梅隆大学 CBL 的主要使命是通过 CBL 联盟的统一协调努力,融合我们大量教职员工、学生和学生的广泛专业知识,在大规模深度学习 (DL) 算法、系统和应用领域处于领先地位。行业合作伙伴。 CMU CBL 的愿景是开发智能算法,迈向智能驱动的社会。 CBL在以下关键研究主题上具有开创性的智力优势:(1)新颖的算法。该主题重点关注新颖的深度学习算法和架构,例如深度神经网络、复杂的循环神经网络、类脑组件、优化、深度强化学习和无监督学习。(2)新颖的系统。我们建议开发新颖的架构、资源管理和软件框架,以在桌面、移动设备、集群和云上实现大规模深度学习平台和应用程序。(3) 健康、移动/物联网和监控领域的新颖应用程序。在规划阶段,我们将建立扎实的中心战略计划、营销计划以及由四个学术站点和大量行业成员组成的CBL联盟。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ruslan Salakhutdinov其他文献
DeCoT: Debiasing Chain-of-Thought for Knowledge-Intensive Tasks in Large Language Models via Causal Intervention
DeCoT:通过因果干预消除大型语言模型中知识密集型任务的思维链偏差
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Tamera Lanham;Anna Chen;Ansh Radhakrishnan;Benoit Steiner;Carson E. Denison;Danny Hernan;Dustin Li;Esin Durmus;Evan Hubinger;Xingxuan Li;Yew Ruochen Zhao;Bosheng Ken Chia;Zhoubo Li;Ningyu Zhang;Yunzhi Yao;Meng Wang;Kaixin Ma;Hao Cheng;Xiaodong Liu;Eric Nyberg;Alex Troy Mallen;Akari Asai;Victor Zhong;Rajarshi Das;Stephen L. Morgan;Christopher Winship;Weijia Shi;Xiaochuang Han;Mike Lewis;Luke Tsvetkov;Zettlemoyer Scott;Wen;Xin Su;Tiep Le;Steven Bethard;Yifan Kai Sun;Ethan Xu;Hanwen Zha;Yue Liu;Hugo Touvron;Louis Martin;Kevin Stone;Peter Al;Amjad Almahairi;Yasmine Babaei;Nikolay;Cunxiang Wang;Xiaoze Liu;Xian;Keheng Wang;Feiyu Duan;Peiguang Sirui Wang;Junda Wu;Tong Yu;Shuai Li;Deconfounded;Suhang Wu;Min Peng;Yue Chen;Jinsong Su;Shicheng Xu;Liang Pang;Huawei Shen;Xueqi Cheng;Zhilin Yang;Peng Qi;Saizheng Zhang;Yoshua Ben;William Cohen;Ruslan Salakhutdinov;Jia;Kun;Zhen;Chenhan Yuan;Qianqian Xie;Jimin Huang;Li;Yangyi Chen;Ganqu Cui;Hongcheng;Fangyuan Gao;Xingyi Zou;Heng Cheng;Ji - 通讯作者:
Ji
Ordovician mantle dynamics in NE-Japan constraints from layered structures of Cumulate Member in the Hayachine-Miyamori Ophiolite
日本东北部奥陶纪地幔动力学受早山-宫森蛇绿岩堆积段层状结构的约束
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Makoto Yamada;Denny Wu;Yao-Hung Hubert Tsai;Hirofumi Ohta;Ruslan Salakhutdinov;Ichiro Takeuchi;Kenji Fukumizu;木村 皐史・小澤 一仁・飯塚 毅 - 通讯作者:
木村 皐史・小澤 一仁・飯塚 毅
C AUSAL R: Causal Reasoning over Natural Language Rulebases
C AUSAL R:自然语言规则库的因果推理
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Jason Weston;Antoine Bordes;S. Chopra;Thomas Wolf;Lysandre Debut;Julien Victor Sanh;Clement Chaumond;Anthony Delangue;Pier;Tim ric Cistac;Rémi Rault;Morgan Louf;Funtow;Sam Davison;Patrick Shleifer;V. Platen;Clara Ma;Yacine Jernite;J. Plu;Canwen Xu;Zhilin Yang;Peng Qi;Saizheng Zhang;Y. Bengio;William Cohen;Ruslan Salakhutdinov - 通讯作者:
Ruslan Salakhutdinov
Tree Search for Language Model Agents
语言模型代理的树搜索
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Jing Yu Koh;Stephen McAleer;Daniel Fried;Ruslan Salakhutdinov - 通讯作者:
Ruslan Salakhutdinov
Automatic Question-Answer Generation for Long-Tail Knowledge
长尾知识自动问答生成
- DOI:
10.48550/arxiv.2403.01382 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Rohan Kumar;Youngmin Kim;Sunitha Ravi;Haitian Sun;Christos Faloutsos;Ruslan Salakhutdinov;Minji Yoon - 通讯作者:
Minji Yoon
Ruslan Salakhutdinov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ruslan Salakhutdinov', 18)}}的其他基金
Phase I I/UCRC Carnegie Mellon University: Center for Big Learning CBL
第一阶段 I/UCRC 卡内基梅隆大学:大学习中心 CBL
- 批准号:
1747769 - 财政年份:2018
- 资助金额:
$ 1.5万 - 项目类别:
Continuing Grant
AF: RI: Medium: Collaborative Research: Understanding and Improving Optimization in Deep and Recurrent Networks
AF:RI:中:协作研究:理解和改进深度和循环网络的优化
- 批准号:
1763562 - 财政年份:2018
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
相似国自然基金
青藏高原隆升对点地梅属亚洲分支物种多样性的影响
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
REU Site: Human-Computer Interaction at Carnegie Mellon University (HCI REU)
REU 站点:卡内基梅隆大学人机交互 (HCI REU)
- 批准号:
2349558 - 财政年份:2024
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
IUCRC Planning Grant Carnegie Mellon University: Center for Materials Data Science for Reliability and Degradation (MDS-Rely)
IUCRC 规划拨款 卡内基梅隆大学:可靠性和退化材料数据科学中心 (MDS-Rely)
- 批准号:
2310663 - 财政年份:2023
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
REU Site: Mellon College Science Summer Scholars Program at Carnegie Mellon University
REU 网站:卡内基梅隆大学梅隆学院科学暑期学者计划
- 批准号:
2244348 - 财政年份:2023
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
MRI: Acquisition of a MALDI TOF/TOF Mass Spectrometer with Imaging Capabilities to Advance Research and Education at Carnegie Mellon University
MRI:卡内基梅隆大学购买具有成像功能的 MALDI TOF/TOF 质谱仪以推进研究和教育
- 批准号:
2117784 - 财政年份:2021
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Phase I I/UCRC Carnegie Mellon University: Center for Big Learning CBL
第一阶段 I/UCRC 卡内基梅隆大学:大学习中心 CBL
- 批准号:
1747769 - 财政年份:2018
- 资助金额:
$ 1.5万 - 项目类别:
Continuing Grant