Collaborative Research: Ultraviolet(UV)-MultiSpectral-Polarization 3D Imaging of the Underwater World

合作研究:水下世界的紫外线 (UV) 多光谱偏振 3D 成像

基本信息

  • 批准号:
    1636028
  • 负责人:
  • 金额:
    $ 40.43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-15 至 2017-02-28
  • 项目状态:
    已结题

项目摘要

Fine-scale mapping of the underwater world is currently elusive because of a fundamental property of aquatic environments--they are in constant motion. Three-Dimensional mapping of the underwater world in an ecologically relevant way requires mapping not only the physical limits of a specific arena but also the biology within it. Here, the researchers propose to revolutionize the way scientists build near-scale (5-10m) underwater maps by the construction of a UV-Multispectral-Polarization imager with complete multilevel imaging features enabling 3D mapping and full optical characterization of underwater environments. The proposed 3D imager will overcome the challenge of a moving and scattering medium; overcome the problems that cripple conventional scanning devices (e.g. co-registration); while simultaneously filling in the 3D map with biologically meaningful information with images and complete characterization of the light field. With such a device, one will have the capability to map the physical footprint of the underwater world, but also extract species identification from optical characteristics, movement characteristics of organisms within it, health/condition status of biological organisms (e.g. coral reefs, oil spills, plastic contaminants), and comprehensive optical characterization. In addition to providing fine scale mapping of underwater worlds that will serve both biological and conservation missions, the researchers will also use this technology to engage STEM programs in both the Austin and St. Louis areas.This is a Collaborative OTIC award to develop a state-of-the-art 3D imaging device whose purpose is to transform the way researchers map underwater environments and biologically characterize the features within it. The principle investigators propose to develop a high spatial and temporal resolution multispectral polarimeter capable of measuring polarization information in RGB bandwidths combined with three separate and distinct narrow spectral bandwidth channels, one of which being in the UV spectrum. This will produce 12 distinct optical channels that are inherently co-registered, with polarization detection allowing for dehazing capabilities to greatly increase the effectiveness of visual simultaneous localization and mapping algorithms (VSLAM) for obtaining 3D map reconstruction. The co-registered channels will overlay maps with optical information for identifying and measuring benthic characteristics. This next generation underwater mapping device will provide scientists with simultaneous information on (i) physical dimensional space (3D depth), (ii) surface characteristics that identify benthos and organisms within the environment (imaging), (iii) optical characterization of the water column and benthos, as well as (iv) allow for fine-scale tracking of organisms within these underwater environments. This device will enable broad ranges of research questions from oceanographers and marine scientists interested in monitoring coral reefs, animal behaviorists studying 3D camouflage and communication properties, to conservation scientists interested in monitoring environmental degradation (oil and plastic contaminants). This collaborative effort will (a) produce a polarization imaging sensor that captures multispectral polarization information in real-time (~20fps), with low power dissipation and with high spatial resolution, (b) provide dynamic multispectral information on underwater features that were previously unattainable due to scanning technologies with low temporal resolution (~1min), (c) develop software to map and track underwater environments modifying currently developed open source VSLAM software, and (d) test emerging biological hypotheses on camouflage, communication and coral reef monitoring.
由于水生环境的一个基本特性——它们处于不断的运动中,目前对水下世界的精细绘制还难以实现。以生态相关的方式绘制水下世界的三维地图不仅需要绘制特定区域的物理限制,还需要绘制其中的生物学。在这里,研究人员提议通过构建具有完整多级成像功能的紫外多光谱偏振成像仪来彻底改变科学家构建近比例(5-10m)水下地图的方式,从而实现水下环境的 3D 测绘和全面光学表征。所提出的 3D 成像仪将克服移动和散射介质的挑战;克服传统扫描设备的瘫痪问题(例如共同注册);同时用图像和光场的完整表征来填充具有生物意义的信息的 3D 地图。有了这样的设备,人们将能够绘制水下世界的物理足迹,还可以从光学特征、其中生物体的运动特征、生物体的健康/状况状态(例如珊瑚礁、石油泄漏)中提取物种识别信息、塑料污染物)以及全面的光学表征。 除了提供水下世界的精细地图以服务于生物和保护任务之外,研究人员还将利用这项技术在奥斯汀和圣路易斯地区开展 STEM 项目。这是一个合作 OTIC 奖项,旨在开发一个国家最先进的 3D 成像设备,其目的是改变研究人员绘制水下环境图并从生物学角度表征水下特征的方式。主要研究人员建议开发一种高空间和时间分辨率的多光谱旋光计,能够测量 RGB 带宽中的偏振信息,并结合三个独立且不同的窄光谱带宽通道,其中一个通道位于 UV 光谱中。 这将产生本质上共同注册的 12 个不同的光学通道,偏振检测允许去雾功能,从而大大提高视觉同步定位和映射算法 (VSLAM) 获得 3D 地图重建的有效性。共同注册的通道将在地图上覆盖光学信息,以识别和测量海底特征。这种下一代水下测绘设备将为科学家提供以下方面的同步信息:(i) 物理维度空间(3D 深度)、(ii) 识别环境中底栖生物和生物体的表面特征(成像)、(iii) 水柱的光学特征和底栖生物,以及(iv)允许对这些水下环境中的生物体进行精细追踪。 该设备将解决广泛的研究问题,从对监测珊瑚礁感兴趣的海洋学家和海洋科学家、研究 3D 伪装和通信特性的动物行为学家,到对监测环境退化(石油和塑料污染物)感兴趣的保护科学家。 这项合作将 (a) 生产出一种偏振成像传感器,能够实时捕获多光谱偏振信息 (~20fps),具有低功耗和高空间分辨率,(b) 提供以前无法实现的水下特征的动态多光谱信息由于扫描技术具有低时间分辨率(约 1 分钟),(c) 开发软件来绘制和跟踪水下环境,修改当前开发的开源 VSLAM 软件,以及 (d) 测试有关伪装、通信和珊瑚礁的新兴生物学假设监控。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Viktor Gruev其他文献

Influence of signal-to-noise ratio on DoLP and AoP measurements during reflectance-mode division-of-focal plane Stokes polarimetry of biological tissues
生物组织反射模式焦平面划分斯托克斯偏振测量中信噪比对 DoLP 和 AoP 测量的影响
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Leanne E. Iannucci;Viktor Gruev;Spencer P Lake
  • 通讯作者:
    Spencer P Lake
Biomimetic-Membrane-Protected Plasmonic Nanostructures as Dual-Modality Contrast Agents for Correlated Surface-Enhanced Raman Scattering and Photoacoustic Detection of Hidden Tumor Lesions.
仿生膜保护的等离子体纳米结构作为双模态造影剂,用于相关表面增强拉曼散射和隐藏肿瘤病变的光声检测。
  • DOI:
    10.1021/acsami.3c18488
  • 发表时间:
    2024-02-07
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    I. Srivastava;Ruiyang Xue;Hsuan;Ziwen Wang;Jamie Jones;Isabella Vasquez;Subhendu P;it;it;Li Lin;Shensheng Zhao;Kristen Flatt;Viktor Gruev;Yun;Shuming Nie
  • 通讯作者:
    Shuming Nie
Polarization-based underwater geolocalization with deep learning
基于偏振的深度学习水下地理定位
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaoyang Bai;Zuodong Liang;Zhongmin Zhu;A. Schwing;David Forsyth;Viktor Gruev
  • 通讯作者:
    Viktor Gruev
Protease-activated indocyanine green nanoprobes for intraoperative NIR fluorescence imaging of primary tumors
  • DOI:
    10.1039/d2na00276k
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Benjamin Lew;Mebin George;Steven Blair;Zhongmin Zhu;Zuodong Liang;Jamie Ludwig;Celeste Y. Kim;Kyekyoon (Kevin) Kim;Viktor Gruev;Hyungsoo Choi
  • 通讯作者:
    Hyungsoo Choi
Fluorescence-guided surgical system using holographic display: from phantom studies to canine patients
使用全息显示的荧光引导手术系统:从模型研究到犬类患者
  • DOI:
    10.1117/1.jbo.28.9.096003
  • 发表时间:
    2023-09
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Mebin B. George;Benjamin Lew;Zuodong Liang;S. Blair;Zhongmin Zhu;Nan Cui;Jamie Ludwig;Mohamed Zayed;Laura E. Selmic;Viktor Gruev
  • 通讯作者:
    Viktor Gruev

Viktor Gruev的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Viktor Gruev', 18)}}的其他基金

NSF Convergence Accelerator Track M: Bioinspired Multispectral Imaging Technology for Intraoperative Cancer Detection
NSF 融合加速器轨道 M:用于术中癌症检测的仿生多光谱成像技术
  • 批准号:
    2344460
  • 财政年份:
    2024
  • 资助金额:
    $ 40.43万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: Metaoptics-Enhanced Vertical Integration for Versatile In-Sensor Machine Vision
合作研究:FuSe:Metaoptics 增强型垂直集成,实现多功能传感器内机器视觉
  • 批准号:
    2328857
  • 财政年份:
    2023
  • 资助金额:
    $ 40.43万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: Metaoptics-Enhanced Vertical Integration for Versatile In-Sensor Machine Vision
合作研究:FuSe:Metaoptics 增强型垂直集成,实现多功能传感器内机器视觉
  • 批准号:
    2328857
  • 财政年份:
    2023
  • 资助金额:
    $ 40.43万
  • 项目类别:
    Continuing Grant
Bioinspired Sensors for Image Guided Cancer Surgery
用于图像引导癌症手术的仿生传感器
  • 批准号:
    2030421
  • 财政年份:
    2020
  • 资助金额:
    $ 40.43万
  • 项目类别:
    Standard Grant
Bioinspired Multispectral Imager for Near Infrared Fluorescence Image Guided Surgery
用于近红外荧光图像引导手术的仿生多光谱成像仪
  • 批准号:
    1740737
  • 财政年份:
    2016
  • 资助金额:
    $ 40.43万
  • 项目类别:
    Standard Grant
Collaborative Research: Ultraviolet(UV)-MultiSpectral-Polarization 3D Imaging of the Underwater World
合作研究:水下世界的紫外线 (UV) 多光谱偏振 3D 成像
  • 批准号:
    1724615
  • 财政年份:
    2016
  • 资助金额:
    $ 40.43万
  • 项目类别:
    Standard Grant
Bioinspired Multispectral Imager for Near Infrared Fluorescence Image Guided Surgery
用于近红外荧光图像引导手术的仿生多光谱成像仪
  • 批准号:
    1603933
  • 财政年份:
    2016
  • 资助金额:
    $ 40.43万
  • 项目类别:
    Standard Grant
Collaborative Research: Development of a high-resolution real-time polarization image sensor for marine deployment
合作研究:开发用于海洋部署的高分辨率实时偏振图像传感器
  • 批准号:
    1130897
  • 财政年份:
    2011
  • 资助金额:
    $ 40.43万
  • 项目类别:
    Standard Grant

相似国自然基金

Bach2调控窄谱长波紫外线(nbUVA)光损伤-铁死亡的机制研究
  • 批准号:
    82373501
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
KIAA1429介导MFAP4-m6A甲基化修饰在紫外线诱导皮肤光老化中的作用和机制研究
  • 批准号:
    82373461
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
GSDMD/RIPK3/MLKL轴调控紫外线诱发视网膜光损伤的机制研究
  • 批准号:
    82301226
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于异质结构的乙烯与紫外线双功能传感材料与器件的制备与传感机制研究
  • 批准号:
    62374086
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
RP11-670E13.6通过抑制RIG-I/MAVS通路延缓紫外线引起皮肤光老化的作用机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Laboratory Measurements of Oxygen (O) and Nitrogen (N2) Ultraviolet (UV) Cross Sections by Particle Impact for Remote Sensing of Thermosphere O/N2 Variation
合作研究:通过粒子撞击实验室测量氧气 (O) 和氮气 (N2) 紫外线 (UV) 截面,以遥感热层 O/N2 变化
  • 批准号:
    2334618
  • 财政年份:
    2024
  • 资助金额:
    $ 40.43万
  • 项目类别:
    Continuing Grant
Collaborative Research: Laboratory Measurements of Oxygen (O) and Nitrogen (N2) Ultraviolet (UV) Cross Sections by Particle Impact for Remote Sensing of Thermosphere O/N2 Variation
合作研究:通过粒子撞击实验室测量氧气 (O) 和氮气 (N2) 紫外线 (UV) 截面,以遥感热层 O/N2 变化
  • 批准号:
    2334619
  • 财政年份:
    2024
  • 资助金额:
    $ 40.43万
  • 项目类别:
    Standard Grant
Collaborative Research: Laboratory Measurements of Oxygen (O) and Nitrogen (N2) Ultraviolet (UV) Cross Sections by Particle Impact for Remote Sensing of Thermosphere O/N2 Variation
合作研究:通过粒子撞击实验室测量氧气 (O) 和氮气 (N2) 紫外线 (UV) 截面,以遥感热层 O/N2 变化
  • 批准号:
    2031346
  • 财政年份:
    2020
  • 资助金额:
    $ 40.43万
  • 项目类别:
    Standard Grant
Collaborative Research: Laboratory Measurements of Oxygen (O) and Nitrogen (N2) Ultraviolet (UV) Cross Sections by Particle Impact for Remote Sensing of Thermosphere O/N2 Variation
合作研究:通过粒子撞击实验室测量氧气 (O) 和氮气 (N2) 紫外线 (UV) 截面,以遥感热层 O/N2 变化
  • 批准号:
    2031349
  • 财政年份:
    2020
  • 资助金额:
    $ 40.43万
  • 项目类别:
    Standard Grant
Fluorescence microscopy for evaluation of Mohs surgical margins
荧光显微镜评估莫氏手术切缘
  • 批准号:
    9913486
  • 财政年份:
    2019
  • 资助金额:
    $ 40.43万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了