Collaborative Research: Nonlinear Interactions between Surface and Internal Gravity Waves in the Ocean

合作研究:海洋表面重力波和内部重力波之间的非线性相互作用

基本信息

  • 批准号:
    1634644
  • 负责人:
  • 金额:
    $ 21.24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-15 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

The action of the wind on the ocean surface transfers momentum, serves as a source of kinetic energy for both turbulence and waves and is a controlling factor of the structure of the ocean surface boundary layer. When wind blows over the ocean, the ocean responds in two significant ways. The first is that viscous shear stresses are communicated below the sea surface via transfer of turbulent momentum. The second is that the sea surface acquires an undulatory character as the pressure differences across the leading and trailing faces of surface waves transfer momentum via form drag. While the undulatory character of the ocean surface can be painfully obvious to the ocean scientist onboard a ship, effects such as mixing associated with surface gravity wave breaking, instabilities of the surface wave shear, and coupling of the surface wave?s Stokes drift with wind driven shear to form Langmuir circulations are ignored in standard ocean surface boundary layer models. Missing as well from these models is a representation of relatively high frequency internal waves that could be prone to breaking immediately below the mixed layer. This project seeks to broaden understanding of the connectivity between ocean surface boundary conditions and upper ocean mixing. The highly nonlinear multi-layer model and the numerical and analytical tools to be developed in this project could be useful for a wide range of physical problems in the upper ocean including shear instabilities and coherent features such as Langmuir vortices. It is also important to stress that small changes in the interior mixing coefficients in the tropical oceans can have an immense feedback on Sea Surface Temperature and, therefore, other physical quantities, including convection and precipitation, of climatological significance. This project will provide training in first principles understanding of nonlinear waves and their interactions to a graduate student and a post-doc in applied mathematics. Research training through their active participation in this cross-disciplinary collaboration will provide them a unique opportunity to broaden their research experience in physical oceanography and improve their understanding of the interplay between the two disciplines. Ocean observations and basic physical considerations point towards a paradigm of greatly enhanced transfers at high wind speeds, trapping in the upper ocean at buoyancy frequency turning points that allows a nonlinear equilibration process and interaction with lower frequency shear that promotes enhanced internal wave dissipation. This paradigm demands consideration of something more sophisticated than a resonant analysis. The objective of this project is to understand the role of surface gravity waves resulting in the nonlinear excitation of internal gravity waves and assessing the internal waves propensity for mixing the upper ocean. Three possible parameter regimes are proposed. At low wind speeds, transfers tend to be from the background Internal Gravity Wave (IGW) field to the Surface Gravity Wave (SGW) field. At high wind speeds, current theoretical predictions of SGW-IGW transfer rates are proportional to wind speed, i.e. a very sensitive dependence upon wind speed. Transfers reverse sign and energy is transferred from the SGW field to the IGW field. The change in sign denoting the transition from low-wind to high-wind conditions coincides with gale force wind conditions. Extrapolating such dependencies to gale force, let alone hurricane force, invalidates the validity of the nonlinear theory. A likely third parameter regime coincides with the breakdown of this theory. The proposed research consists of three coordinated efforts. The first is an observational study with the objectives of documenting the vertical structure of upper ocean turbulent dissipation relative to standard mixed-layer schemes and estimates of SGW-IGW transfers rates, and documenting the relationship of high frequency internal wave variability to wind and wave conditions. The second of the three efforts is to develop a highly nonlinear model for a multi-layer system, focusing on the three-layer (well-mixed upper, relatively thin transitional, and deep lower layers) case, without any limitations on wavelength scales, and to perform a numerical study, to investigate both resonant and non-resonant SGW-IGW interactions at finite amplitude. Questions of the onset of internal wave breaking and transition layer mixing will be addressed. The third effort is to construct a self-consistent finite amplitude analytic description of nonlinear SGW-IGW interactions using the proposed layered formulation. The proposed third approach is, by taking advantage of the canonical Hamiltonian structure of the model, to investigate the equilibration of the IGW field with SGW variability and how this equilibration changes at finite amplitude. Then, the numerical and analytic studies will be cross-validated and compared with the ocean observations.
风在海洋表面的作用传递动量,是湍流和波浪的动能来源,也是海洋表面边界层结构的控制因素。当风吹过海洋时,海洋会以两种重要方式做出反应。第一个是粘性剪切应力通过湍流动量的传递在海面下方传递。第二个原因是,由于表面波前表面和后表面之间的压力差通过形状阻力传递动量,因此海面具有波动特征。虽然海洋表面的波动特征对于船上的海洋科学家来说是显而易见的,但诸如与表面重力波破碎相关的混合、表面波剪切的不稳定性以及表面波斯托克斯随风漂移的耦合等效应在标准海洋表面边界层模型中,忽略了形成朗缪尔环流的驱动切变。这些模型还缺少相对高频内波的表示,这些内波可能容易在混合层正下方破裂。该项目旨在扩大对海洋表面边界条件与上层海洋混合之间的联系的理解。该项目将开发的高度非线性多层模型以及数值和分析工具可用于解决上层海洋的各种物理问题,包括剪切不稳定性和朗缪尔涡旋等相干特征。还需要强调的是,热带海洋内部混合系数的微小变化可能会对海面温度产生巨大的反馈,从而对其他具有气候学意义的物理量(包括对流和降水)产生巨大的反馈。 该项目将为应用数学领域的研究生和博士后提供关于非线性波及其相互作用的第一原理理解的培训。通过积极参与这种跨学科合作进行的研究培训将为他们提供独特的机会,以扩大他们在物理海洋学方面的研究经验,并提高他们对两个学科之间相互作用的理解。海洋观测和基本物理考虑指向了一种在高风速下大大增强传输的范例,在浮力频率转折点处捕获在上层海洋中,从而允许非线性平衡过程以及与低频切变的相互作用,从而促进增强的内波耗散。这种范式需要考虑比共振分析更复杂的东西。该项目的目的是了解表面重力波在内部重力波非线性激励中的作用,并评估内部波浪混合上层海洋的倾向。提出了三种可能的参数机制。在低风速下,传输往往是从背景内部重力波 (IGW) 场到表面重力波 (SGW) 场。在高风速下,当前 SGW-IGW 传输速率的理论预测与风速成正比,即对风速的依赖性非常敏感。传输相反的符号,能量从 SGW 场传输到 IGW 场。表示从低风向高风条件转变的符号的变化与大风条件一致。将这种依赖性外推到大风力,更不用说飓风力,会使非线性理论的有效性失效。可能的第三个参数体系与该理论的崩溃相一致。拟议的研究由三项协调一致的努力组成。第一个是观测研究,目的是记录上层海洋湍流耗散相对于标准混合层方案的垂直结构和 SGW-IGW 传输速率的估计,并记录高频内波变化与风浪条件的关系。三项工作中的第二项是开发多层系统的高度非线性模型,重点关注三层(混合良好的上层、相对较薄的过渡层和较深的下层)情况,对波长尺度没有任何限制,并进行数值研究,研究有限振幅下的共振和非共振 SGW-IGW 相互作用。将解决内波破碎和过渡层混合的开始问题。第三项努力是使用所提出的分层公式构建非线性 SGW-IGW 相互作用的自洽有限振幅分析描述。提出的第三种方法是,通过利用模型的规范哈密顿结构,研究 IGW 场与 SGW 变化的平衡以及这种平衡如何在有限幅度下变化。然后,数值和分析研究将进行交叉验证并与海洋观测进行比较。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Oceanic Ultra-Violet Catastrophe, Wave-Particle Duality and a Strongly Nonlinear Concept for Geophysical Turbulence
海洋紫外线灾难、波粒二象性和地球物理湍流的强非线性概念
  • DOI:
    doi:10.3390/fluids2030036
  • 发表时间:
    2017-06
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Polzin, Kurt L.;Lvov, Yuri
  • 通讯作者:
    Lvov, Yuri
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kurt Polzin其他文献

Kurt Polzin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kurt Polzin', 18)}}的其他基金

Woods Hole Oceanographic Institution - Oceanographic Instrumentation (Moored Instrumentation to Support Present and Future Field Programs)
伍兹霍尔海洋研究所 - 海洋仪器(支持当前和未来实地计划的系泊仪器)
  • 批准号:
    2316002
  • 财政年份:
    2023
  • 资助金额:
    $ 21.24万
  • 项目类别:
    Continuing Grant
Collaborative Research: Probing internal gravity wave dynamics and dissipation using global observations and numerical simulations
合作研究:利用全球观测和数值模拟探测内部重力波动力学和耗散
  • 批准号:
    2319144
  • 财政年份:
    2023
  • 资助金额:
    $ 21.24万
  • 项目类别:
    Standard Grant
Collaborative Research: The Internal Wave Spectrum and Boundary Mixing in the Sub-Tropical South Atlantic
合作研究:亚热带南大西洋的内波谱和边界混合
  • 批准号:
    2232439
  • 财政年份:
    2022
  • 资助金额:
    $ 21.24万
  • 项目类别:
    Continuing Grant
Collaborative Research: Bottom Boundary Layer Turbulent and Abyssal Recipes
合作研究:底部边界层湍流和深渊配方
  • 批准号:
    1756251
  • 财政年份:
    2018
  • 资助金额:
    $ 21.24万
  • 项目类别:
    Continuing Grant
Collaborative Research: Dynamics of the Orkney Passage Outflow
合作研究:奥克尼群岛航道流出的动力学
  • 批准号:
    1536779
  • 财政年份:
    2015
  • 资助金额:
    $ 21.24万
  • 项目类别:
    Standard Grant
RAPID: Fine- and Microstructure Observations in Conjunction with a GEOTRACES Section along 40 degrees S in the Atlantic
RAPID:与大西洋南纬 40 度沿线的 GEOTRACES 剖面相结合的精细和微观结构观测
  • 批准号:
    1208454
  • 财政年份:
    2011
  • 资助金额:
    $ 21.24万
  • 项目类别:
    Standard Grant
CMG Collabortative Research: The Oceanic Internal Wave Energy Spectrum - Synthesis of Theory and Observations
CMG 合作研究:海洋内波能量谱 - 理论与观测的综合
  • 批准号:
    0417466
  • 财政年份:
    2004
  • 资助金额:
    $ 21.24万
  • 项目类别:
    Continuing Grant
Construction of a New Fine- and Microstructure Profiler
新型精细和微观结构分析仪的构建
  • 批准号:
    0118401
  • 财政年份:
    2001
  • 资助金额:
    $ 21.24万
  • 项目类别:
    Standard Grant
Lowered ADCP Finestructure and Inferred Mixing in the Deep Ocean
降低 ADCP 精细结构并推断深海混合
  • 批准号:
    9906731
  • 财政年份:
    1999
  • 资助金额:
    $ 21.24万
  • 项目类别:
    Standard Grant
SGER: An Intercomparison of Lowered Acoustic Doppler CurrentProfilers and Expendable Current Profilers
SGER:降低声学多普勒电流剖面仪和一次性电流剖面仪的比较
  • 批准号:
    9727701
  • 财政年份:
    1997
  • 资助金额:
    $ 21.24万
  • 项目类别:
    Standard Grant

相似国自然基金

岩石非线性粘弹本构关系研究及基于密集地震台阵数据的应用
  • 批准号:
    42374146
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
气候变暖背景下渤海低氧对陆源营养盐输入的非线性响应研究
  • 批准号:
    42376199
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于双色场激发辐射太赫兹波的新型材料非线性特性研究
  • 批准号:
    62375199
  • 批准年份:
    2023
  • 资助金额:
    47 万元
  • 项目类别:
    面上项目
大数据时代面向非线性方程组求解的投影算法及其应用研究
  • 批准号:
    62302331
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
非线性磁流体空间分数阶模型长时间计算研究
  • 批准号:
    12301516
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
  • 批准号:
    2423960
  • 财政年份:
    2024
  • 资助金额:
    $ 21.24万
  • 项目类别:
    Standard Grant
Collaborative Research: Nonlinear Wake Observations at a Kuroshio Seamount (NOKS)
合作研究:黑潮海山非线性尾流观测 (NOKS)
  • 批准号:
    2318952
  • 财政年份:
    2024
  • 资助金额:
    $ 21.24万
  • 项目类别:
    Standard Grant
Collaborative Research: Nonlinear Wake Observations at a Kuroshio Seamount (NOKS)
合作研究:黑潮海山非线性尾流观测 (NOKS)
  • 批准号:
    2318951
  • 财政年份:
    2024
  • 资助金额:
    $ 21.24万
  • 项目类别:
    Standard Grant
eMB: Collaborative Research: ML/AI-assisted environmental scale microbial nonlinear metabolic models
eMB:协作研究:ML/AI 辅助的环境规模微生物非线性代谢模型
  • 批准号:
    2325172
  • 财政年份:
    2023
  • 资助金额:
    $ 21.24万
  • 项目类别:
    Standard Grant
Collaborative Research: Analysis and Control of Nonlinear Oscillatory Networks for the Design of Novel Cortical Stimulation Strategies
合作研究:用于设计新型皮质刺激策略的非线性振荡网络的分析和控制
  • 批准号:
    2308640
  • 财政年份:
    2023
  • 资助金额:
    $ 21.24万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了