PFI:BIC - Adaptive Robotic Nursing Assistants for Physical Tasks in Hospital Environments

PFI:BIC - 在医院环境中执行体力任务的自适应机器人护理助理

基本信息

  • 批准号:
    1643989
  • 负责人:
  • 金额:
    $ 86.32万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-06-01 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

This Partnerships for Innovation: Building Innovation Capacity (PFI:BIC) project aims to provide next-generation assistive robots to support the activities of hospital-based registered nurses (RNs). There are nearly three million registered nurses employed in the United States, making them the largest pool of healthcare providers in the country. Technology that affects the performance of this large labor pool cannot fail to have impact. Due to advancements in robotics and computer technology, access to intelligent communication, sensing, and computing hardware is on the cusp of becoming common--not only for healthcare professionals, but also for patients themselves. The project led by The University of Kentucky at Louisville in collaboration with the University of Texas at Arlington will focus on the creation of new design tools that can configure the hardware and software of adaptive robotic nursing assistants (ARNA). ARNA will be specifically designed to assist nurses in healthcare facilities with simple tasks such as, lift assistance, delivery of everyday lightweight objects (medicine, medical wearable equipment), and some physical assistance with movement of heavier objects, such as furniture, gurneys, and the patients themselves. The design and engineering innovations resulting from insights gained in this project may have great value deployed as products in broader consumer markets in addition to hospitals. Examples include in-home service and assistive robots, robots for assistance in public venues, and co-Robot manufacturing where humans are in close proximity to robot workers. The improved understanding of human-robot and nurse-robot interaction could represent enabling technology that will facilitate research breakthroughs and increase productivity and social acceptance of robotics. The research will also advance the understanding of the perceptual effects of robot design aesthetics and interfaces.The proposed Adaptive Robotic Nurse Assistants will navigate cluttered hospitals, while equipped with multi-modal skin sensors that can anticipate nurse intent, automate mundane low-level tasks, but keep nurses in the decision loop. Modular and strong hardware will be deployed in reconfigurable platforms specially designed for nurse physical assistance. Adaptive human-machine interfaces will play a key role in this project, as these interfaces directly impact the ability of robots to help nurses in a dynamic, unstructured environment. Rather than pre-programming robot behaviors, learning algorithms will be used so that robots adapt to human preferences. Two leading applications are envisioned for feasibility evaluation by quantitative and qualitative metrics, including patient sitters and walkers. The sitter robot will take vital sign measurements, evaluate risk from patient movement and pose, and provide continuous observation of patients and feedback to and from nurses. The walker robot will assist nurses and patients by providing partial balance support, navigating cluttered environments, and assisting with medical equipment transportation.The lead institution is the University of Kentucky at Louisville in collaboration with the University of Texas at Arlington with its multidisciplinary departments including the College of Engineering, College of Nursing, and the University of Texas at Arlington Research Institute (UTARI). Primary industrial partners include QinetiQ-North America (Waltham, MA), a large corporation specializing in unmanned systems, and RE2 (Pittsburgh, PA), a small business specializing in modular robotic manipulators that will contribute unique battle-tested hardware and systems engineering. In-hospital testing and evaluation of the proposed robots will be carried out by nurse researchers at the University of Texas at Arlington College of Nursing and Texas Health Resources (Dallas-Fort Worth, TX), a large healthcare provider.
该创新伙伴关系:建设创新能力 (PFI:BIC) 项目旨在提供下一代辅助机器人,以支持医院注册护士 (RN) 的活动。美国有近三百万注册护士,是美国最大的医疗保健提供者群体。影响这个庞大劳动力库绩效的技术不可能不产生影响。由于机器人和计算机技术的进步,智能通信、传感和计算硬件的使用即将变得普遍——不仅对医疗保健专业人员来说,而且对患者本身来说也是如此。该项目由肯塔基大学路易斯维尔分校与德克萨斯大学阿灵顿分校合作领导,重点是创建新的设计工具,可以配置自适应机器人护理助理(ARNA)的硬件和软件。 ARNA 将专门设计用于协助医疗机构的护士完成简单的任务,例如举升协助、运送日常轻量物体(药品、医用可穿戴设备),以及移动较重物体(例如家具、轮床和医疗设备)的一些身体协助。患者本人。从该项目中获得的见解所产生的设计和工程创新可能具有巨大的价值,可以作为产品部署到除医院之外的更广泛的消费市场。例如,家庭服务和辅助机器人、公共场所协助机器人以及人类与机器人工人近距离接触的协作机器人制造。对人类与机器人和护士与机器人交互的理解的加深可能代表着促进研究突破、提高生产率和社会对机器人技术的接受度的技术。该研究还将增进对机器人设计美学和界面感知效果的理解。拟议的自适应机器人护士助理将在杂乱的医院中导航,同时配备多模态皮肤传感器,可以预测护士的意图,自动执行日常的低级任务,但让护士参与决策。模块化且强大的硬件将部署在专为护士身体援助而设计的可重构平台中。自适应人机界面将在该项目中发挥关键作用,因为这些界面直接影响机器人在动态、非结构化环境中帮助护士的能力。将使用学习算法,而不是预先编程机器人的行为,以便机器人适应人类的偏好。设想通过定量和定性指标进行可行性评估的两个主要应用,包括病人看护者和步行者。坐式机器人将进行生命体征测量,评估患者运动和姿势的风险,并持续观察患者并向护士提供反馈。步行机器人将通过提供部分平衡支持、在杂乱的环境中导航以及协助医疗设备运输来帮助护士和患者。牵头机构是肯塔基大学路易斯维尔分校,与德克萨斯大学阿灵顿分校及其多学科部门合作,包括工程学院、护理学院和德克萨斯大学阿灵顿研究所 (UTARI)。主要工业合作伙伴包括 QinetiQ-North America(马萨诸塞州沃尔瑟姆),一家专门从事无人系统的大型公司,以及 RE2(宾夕法尼亚州匹兹堡),一家专门从事模块化机器人操纵器的小型企业,该公司将提供经过实战考验的独特硬件和系统工程。对拟议机器人的院内测试和评估将由德克萨斯大学阿灵顿护理学院和德克萨斯州健康资源公司(德克萨斯州达拉斯沃斯堡)的护士研究人员进行,这是一家大型医疗保健提供者。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dan Popa其他文献

Dan Popa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dan Popa', 18)}}的其他基金

FW-HTF-RM: Enhancing Future Work of Nursing Professionals through Collaborative Human-Robot Interfaces
FW-HTF-RM:通过协作式人机界面增强护理专业人员的未来工作
  • 批准号:
    2026584
  • 财政年份:
    2020
  • 资助金额:
    $ 86.32万
  • 项目类别:
    Standard Grant
I-Corps: Adaptive Robotic Nursing Assistants for Physical Healthcare Delivery
I-Corps:用于身体保健服务的自适应机器人护理助理
  • 批准号:
    2016973
  • 财政年份:
    2020
  • 资助金额:
    $ 86.32万
  • 项目类别:
    Standard Grant
SCH: INT: Adaptive Partnership for the Robotic Treatment of Autism
SCH:INT:自闭症机器人治疗的适应性合作伙伴关系
  • 批准号:
    1838808
  • 财政年份:
    2019
  • 资助金额:
    $ 86.32万
  • 项目类别:
    Standard Grant
MRI: Development of a Multiscale Additive Manufacturing Instrument with Integrated 3D Printing and Robotic Assembly
MRI:开发具有集成 3D 打印和机器人装配功能的多尺度增材制造仪器
  • 批准号:
    1828355
  • 财政年份:
    2018
  • 资助金额:
    $ 86.32万
  • 项目类别:
    Standard Grant
NRI: FND: Light-Powered Microrobots for Future MIcrofactories
NRI:FND:未来微型工厂的光动力微型机器人
  • 批准号:
    1734383
  • 财政年份:
    2017
  • 资助金额:
    $ 86.32万
  • 项目类别:
    Standard Grant
I-Corps: Multi-modal Robot Skins for Adaptive Human-Machine Interfaces
I-Corps:用于自适应人机界面的多模式机器人皮肤
  • 批准号:
    1713741
  • 财政年份:
    2017
  • 资助金额:
    $ 86.32万
  • 项目类别:
    Standard Grant
Doctoral Consortium at the 2016 IEEE Conference on Automation Science and Engineering (CASE 2016)
2016年IEEE自动化科学与工程会议博士联盟(CASE 2016)
  • 批准号:
    1645670
  • 财政年份:
    2016
  • 资助金额:
    $ 86.32万
  • 项目类别:
    Standard Grant
EAGER: Cybermanufacturing: Design Tools for Nanofactories with Robust Millimetric Assemblers
EAGER:网络制造:具有强大毫米级组装机的纳米工厂设计工具
  • 批准号:
    1633119
  • 财政年份:
    2016
  • 资助金额:
    $ 86.32万
  • 项目类别:
    Standard Grant
PFI:BIC - Adaptive Robotic Nursing Assistants for Physical Tasks in Hospital Environments
PFI:BIC - 在医院环境中执行体力任务的自适应机器人护理助理
  • 批准号:
    1534124
  • 财政年份:
    2015
  • 资助金额:
    $ 86.32万
  • 项目类别:
    Standard Grant
EAGER: Cybermanufacturing: Design Tools for Nanofactories with Robust Millimetric Assemblers
EAGER:网络制造:具有强大毫米级组装机的纳米工厂设计工具
  • 批准号:
    1547197
  • 财政年份:
    2015
  • 资助金额:
    $ 86.32万
  • 项目类别:
    Standard Grant

相似国自然基金

商业银行不当行为风险传染的路径、机理与治理——基于员工社会网络的研究
  • 批准号:
    72371125
  • 批准年份:
    2023
  • 资助金额:
    39 万元
  • 项目类别:
    面上项目
太赫兹准BIC超表面用于食用植物油中农药残留检测的研究
  • 批准号:
    32371983
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
商业银行普惠金融个体违约风险评估:基于司法案情知识图谱的增强模型
  • 批准号:
    72371126
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
回音壁微腔中的光学BIC模式及应用
  • 批准号:
    12334016
  • 批准年份:
    2023
  • 资助金额:
    239 万元
  • 项目类别:
    重点项目
气候风险视角下的商业银行经营与决策:机制分析与实证检验
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目

相似海外基金

トロイダル双極子とBICの融合による近赤外光完全吸収シリコンメタ表面の実現
通过环形偶极子与BIC融合实现完全吸收近红外光的硅超表面
  • 批准号:
    24KJ1687
  • 财政年份:
    2024
  • 资助金额:
    $ 86.32万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
TASK AREAS TWO (2), THREE (3), FOUR (4), AND SIX (6)FOR THE NATIONAL INSTITUTE OF HEALTH (NIH) BRAIN RESEARCH THROUGH ADVANCING INNOVATIVE NEUROTECHNOLOGIES (BRAIN) INITIATIVE CELL ATLAS NETWORK (BIC
任务领域二 (2)、三 (3)、四 (4) 和六 (6) 用于美国国立卫生研究院 (NIH) 通过推进创新神经技术 (大脑) 倡议细胞图谱网络 (BIC) 进行脑研究
  • 批准号:
    10931181
  • 财政年份:
    2023
  • 资助金额:
    $ 86.32万
  • 项目类别:
BIC
商业银行
  • 批准号:
    640144
  • 财政年份:
    2022
  • 资助金额:
    $ 86.32万
  • 项目类别:
    Collaborative R&D
Biomolecular sensing in all-dielectric metasurfaces with collective resonances
具有集体共振的全介电超表面中的生物分子传感
  • 批准号:
    22K20496
  • 财政年份:
    2022
  • 资助金额:
    $ 86.32万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Dynamique des populations de botryches (Botrychium spp) au parc national du Bic
比克国家公园的贵腐菌 (Botrychium spp) 种群动态
  • 批准号:
    564767-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 86.32万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了