NRI: Receding Horizon Integrity-A New Navigation Safety Methodology for Co-Robotic Passenger Vehicles
NRI:后退地平线完整性——协作机器人乘用车的新导航安全方法
基本信息
- 批准号:1637899
- 负责人:
- 金额:$ 89.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of this research is to ensure the integrity of vehicle position, heading, and velocity estimates that are used by self-driving cars as the basis for life-critical decisions such as the initiation and execution of hazard-avoidance maneuvers. Integrity, which is a measure of trust in a sensor's information, has been successfully implemented in commercial aircraft to guarantee the safety of maneuvers such as landing. This project addresses several obstacles in translating integrity from aviation applications to self-driving cars, including integrating the disparate sensor types used by ground vehicles; meeting the stringent demands of routine autonomous driving; accounting for the number, proximity, and high relative velocity of other vehicles on the road; and evaluating multiple, distinct, and mutually exclusive courses of action in a timely manner. Project subtasks include characterization of integrity for representative sensors, construction of appropriate models for uncertainty propagation, and experimental validation of the resulting integrity framework. The project will advance the larger research effort to realize the potential of self-driving cars for relieving congestion, reducing emissions, and saving lives. The work includes public outreach efforts on autonomous navigation for self-driving cars, which will build upon an ongoing relationship with Chicago's Museum of Science and Industry, including a hands-on demonstration during National Robotics Week to illustrate how safety can be ensured despite uncertainties related to sensor readings, vehicle dynamics, and the driving environment.Specifically, this research will provide new experimental and analytical methods to quantify and prove self-driving car safety. The results of this work will create a high-level, sensor-independent, quantifiable metric that can be used to compare, evaluate, and certify safety across self-driving car manufacturers. Knowledge will be advanced in several previously-unexplored areas, including first-ever demonstrations of: 1) high-integrity sensor measurement error and fault models for non-GPS sensors, 2) analytical methods to quantify the safety risk of feature extraction and data association algorithms required in lidar, radar, and camera-based localization, 3) multi-sensor pose estimators and integrity monitors designed to evaluate the impact of undetected sensor faults on safety risk, and 4) rigorously derived and experimentally validated integrity risk prediction methods in dynamic environments.
这项研究的目的是确保自动驾驶汽车使用的车辆位置、航向和速度估计的完整性,作为生命攸关决策的基础,例如启动和执行危险规避操作。 完整性是对传感器信息的信任程度,已在商用飞机中成功实施,以保证着陆等操作的安全。该项目解决了将完整性从航空应用转化为自动驾驶汽车的几个障碍,包括集成地面车辆使用的不同类型的传感器;满足日常自动驾驶的严格要求;考虑道路上其他车辆的数量、接近度和高相对速度;及时评估多种、不同且相互排斥的行动方案。项目子任务包括表征传感器的完整性、构建适当的不确定性传播模型以及对所得完整性框架进行实验验证。该项目将推进更大规模的研究工作,以实现自动驾驶汽车在缓解拥堵、减少排放和拯救生命方面的潜力。这项工作包括有关自动驾驶汽车自主导航的公共宣传工作,该工作将建立在与芝加哥科学与工业博物馆的持续关系基础上,包括在国家机器人周期间进行实践演示,以说明如何在存在相关不确定性的情况下确保安全具体来说,这项研究将为量化和证明自动驾驶汽车的安全性提供新的实验和分析方法。这项工作的结果将创建一个高级的、独立于传感器的、可量化的指标,可用于比较、评估和认证自动驾驶汽车制造商的安全性。将在几个先前未探索的领域推进知识,包括首次演示:1)非 GPS 传感器的高完整性传感器测量误差和故障模型,2)量化特征提取和数据关联的安全风险的分析方法激光雷达、雷达和基于摄像头的定位所需的算法,3) 多传感器姿态估计器和完整性监视器,旨在评估未检测到的传感器故障对安全风险的影响,以及 4) 严格推导和实验验证的完整性风险动态环境中的预测方法。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Integrity monitoring for Kalman filter-based localization
- DOI:10.1177/0278364920960517
- 发表时间:2020-11-01
- 期刊:
- 影响因子:9.2
- 作者:Arana, Guillermo Duenas;Hafez, Osama Abdul;Spenko, Matthew
- 通讯作者:Spenko, Matthew
GMP-Overbound Parameter Determination for Measurement Error Time Correlation Modeling
用于测量误差时间相关建模的 GMP-Overbound 参数确定
- DOI:10.33012/2020.17137
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Jada, Sandeep K.;Joerger, Mathieu
- 通讯作者:Joerger, Mathieu
LiDAR Data Association Risk Reduction, Using Tight Integration with INS
利用与 INS 的紧密集成降低 LiDAR 数据关联风险
- DOI:10.33012/2018.15976
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Hassani, Ali;Joerger, Mathieu;Arana, Guillermo Dueas;Spenko, Matthew
- 通讯作者:Spenko, Matthew
Recursive Integrity Monitoring for Mobile Robot Localization Safety
移动机器人定位安全的递归完整性监控
- DOI:10.1109/icra.2019.8794115
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Arana, Guillermo Duenas;Hafez, Osama Abdul;Joerger, Mathieu;Spenko, Matthew
- 通讯作者:Spenko, Matthew
On Robot Localization Safety for Fixed-Lag Smoothing: Quantifying the Risk of Misassociation
固定滞后平滑的机器人定位安全:量化错误关联的风险
- DOI:10.1109/plans46316.2020.9110126
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Hafez, Osama Abdul;Arana, Guillermo Duenas;Chen, Yihe;Joerger, Mathieu;Spenko, Matthew
- 通讯作者:Spenko, Matthew
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Spenko其他文献
Fault-Free Integrity of Urban Driverless Vehicle Navigation with Multi-Sensor Integration: A Case Study in Downtown Chicago
具有多传感器集成的城市无人驾驶车辆导航的无故障完整性:芝加哥市中心的案例研究
- DOI:
10.33012/navi.631 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Kana Nagai;Matthew Spenko;R. Henderson;B. Pervan - 通讯作者:
B. Pervan
Matthew Spenko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Spenko', 18)}}的其他基金
EFRI C3 SoRo: Design Principles for Soft Robots Based on Boundary Constrained Granular Swarms
EFRI C3 SoRo:基于边界约束粒群的软体机器人设计原理
- 批准号:
1830939 - 财政年份:2018
- 资助金额:
$ 89.99万 - 项目类别:
Standard Grant
NRI: FND: The Urban Design and Policy Implications of Ubiquitous Robots and Navigation Safety
NRI:FND:无处不在的机器人和导航安全的城市设计和政策影响
- 批准号:
1830642 - 财政年份:2018
- 资助金额:
$ 89.99万 - 项目类别:
Standard Grant
Grant for Doctoral Consortium of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014)
2014年IEEE/RSJ智能机器人与系统国际会议博士联盟资助(IROS 2014)
- 批准号:
1451230 - 财政年份:2014
- 资助金额:
$ 89.99万 - 项目类别:
Standard Grant
相似国自然基金
基于裂隙黄土斜坡模型试验的渐进后退式滑坡成灾机理研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
嵌入后退式分离的复杂流动干扰与分离动力学研究
- 批准号:U21B2054
- 批准年份:2021
- 资助金额:260 万元
- 项目类别:联合基金项目
滑模与适定运动统一的稳定条件及基于值函数的受约束切换系统控制研究
- 批准号:61773006
- 批准年份:2017
- 资助金额:51.0 万元
- 项目类别:面上项目
干热河谷冲沟沟头后退的水力、重力协同作用机制
- 批准号:41571277
- 批准年份:2015
- 资助金额:74.0 万元
- 项目类别:面上项目
多层柱状波导中后退波的传播特性及其应用
- 批准号:11474303
- 批准年份:2014
- 资助金额:90.0 万元
- 项目类别:面上项目
相似海外基金
Real-Time Algorithms and Its Applications for Receding Horizon Control of Large-Scale Complex Nonlinear Systems
大规模复杂非线性系统后退地平线控制的实时算法及其应用
- 批准号:
21560465 - 财政年份:2009
- 资助金额:
$ 89.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of Autopilot and Collision Avoidance Systems for Ships by Nonlinear Receding Horizon H_∞ Control Theory
非线性后退视界H_∞控制理论开发船舶自动舵及避碰系统
- 批准号:
18560428 - 财政年份:2006
- 资助金额:
$ 89.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on robust model predictive control for dynamical systems with constraints of logic and state switchings
具有逻辑和状态切换约束的动力系统鲁棒模型预测控制研究
- 批准号:
15560373 - 财政年份:2003
- 资助金额:
$ 89.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
拘束条件と可変ダイナミクスを含む非線形系の実時間最適制御アルゴリズム
具有约束和可变动态的非线性系统的实时最优控制算法
- 批准号:
15760319 - 财政年份:2003
- 资助金额:
$ 89.99万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Receding Horizon制御の有するロバスト性の解明とその設計問題への応用
阐明后退地平线控制的鲁棒性及其在设计问题中的应用
- 批准号:
13750428 - 财政年份:2002
- 资助金额:
$ 89.99万 - 项目类别:
Grant-in-Aid for Young Scientists (B)