Asymmetric DNA Shapes for Orienting Molecular Components within Hybrid Nanodevices

用于定向混合纳米器件中分子成分的不对称 DNA 形状

基本信息

  • 批准号:
    1636364
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-01 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

A key problem is the scalable manufacturing of "hybrid nanodevices" which combine a conventionally-fabricated optical or electronic device with an unconventional component, such as a single molecule or nanoparticle. The unconventional component has some sought-after property, but it is too small to function on its own, and the conventionally-fabricated device connects the unconventional component to the larger world. Applications include the incorporation of quantum dots into electronics for flat panel displays, or into optical chips for quantum computers or telecommunications. Biological applications include the incorporation of single proteins or DNA into sensors for diagnostics or genome sequencing. Current methods for creating hybrid devices are too expensive, and have low yields. Research under this award combines experimental DNA nanotechnology, theoretical computational geometry, and conventional microfabrication to develop novel fabrication techniques that will bring prototype hybrid nanodevices out of the laboratory and enable them to be inexpensively produced at industrial-scale. Techniques developed under this award will be spread through the greater research community via collaborations and tutorial workshops. This research will be shared with women and minority high school students through student visiting days at the laboratory, and reciprocal researcher visits to high school classrooms, to stimulate their participation in STEM fields. Scientists have long relied on random processes to integrate single molecules and nanoparticles with microfabricated devices. This has allowed them to demonstrate the extraordinary performance of unconventional components, but only for a few prototype devices. Recently, the directed self-assembly of DNA origami shapes onto lithographically-patterned binding sites has allowed the reliable positioning of single molecules or nanoparticles at precise locations within microfabricated devices. However, the use of symmetric DNA triangles has limited the technique to simple point-like components, preventing the integration of components which must be precisely oriented, such as molecular rectifiers. This research will design, simulate, synthesize, and experimentally test asymmetric DNA shapes capable of precisely orienting their cargo onto lithographic binding sites. Numerical energy landscape analysis will be used to identify promising asymmetric shapes, and analytic proofs will be constructed to confirm that their binding landscapes have no local minima. A major intellectual contribution will be guidelines and principles for designing binding sites and energy landscapes for directed self-assembly. The high-yield fabrication of thousands of bipolar or multipolar devices based on carbon nanotubes and polarization-dependent fluorescent dyes will demonstrate the practical and scalable integration of complex, asymmetric components into hybrid nanodevices.
一个关键的问题是将“混合纳米版”的可扩展制造结合在一起,将传统的光学或电子设备与非常规组件(例如单分子或纳米颗粒)相结合。非常规组件具有一些抢手的属性,但是它太小而无法自行运行,并且常规制作的设备将非常规组件连接到更大的世界。应用包括将量子点掺入用于平板显示器的电子设备中,或将量子点掺入用于量子计算机或电信的光学芯片中。生物学应用包括将单蛋白或DNA掺入用于诊断或基因组测序的传感器中。当前创建混合设备的方法太贵了,产量较低。 该奖项的研究结合了实验性DNA纳米技术,理论计算几何形状和常规的微观加工,以开发新型的制造技术,这些技术将使原型混合纳米版从实验室中带出实验室,并使它们能够在工业范围内易于生产。根据该奖项开发的技术将通过合作和教程研讨会通过更大的研究社区传播。 这项研究将与妇女和少数族裔高中生通过实验室的访问日子与互惠研究者访问高中教室,以刺激她们参与STEM领域。长期以来,科学家一直依靠随机过程将单分子和纳米颗粒与微生物装置整合在一起。这使他们能够证明非常规组件的非凡性能,但仅适用于一些原型设备。最近,将DNA折纸形状的定向自组装到画面图案的结合位点上使单分子或纳米颗粒可靠地定位在微生物装置内​​的精确位置。然而,对称DNA三角形的使用将技术限制在简单的点状组件上,从而阻止了必须精确取向的组件的整合,例如分子整流器。这项研究将设计,模拟,合成和实验测试不对称的DNA形状,能够将其货物精确定向到光刻结合位点。数值能量景观分析将用于识别有希望的不对称形状,并将构建分析证明以确认其结合景观没有局部最小值。主要的智力贡献将是为定向自组装设计绑定站点和能源景观的准则和原则。基于碳纳米管和偏振依赖性荧光染料的数千种双极或多极设备的高收益制造将证明复杂的,不对称的成分与混合纳米设计的实际整合。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
DNA origami: The bridge from bottom to top
  • DOI:
    10.1557/mrs.2017.275
  • 发表时间:
    2017-12
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Anqin Xu;J. Harb;M. Kostiainen;W. Hughes;A. Woolley;Haitao Liu;A. Gopinath
  • 通讯作者:
    Anqin Xu;J. Harb;M. Kostiainen;W. Hughes;A. Woolley;Haitao Liu;A. Gopinath
DNA Nanotechnology: A foundation for Programmable Nanoscale Materials
  • DOI:
    10.1557/mrs.2017.279
  • 发表时间:
    2017-12-01
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Bathe, Mark;Rothemund, Paul W. K.
  • 通讯作者:
    Rothemund, Paul W. K.
Properties of DNA- and Protein-Scaffolded Lipid Nanodiscs
  • DOI:
    10.1021/acsnano.0c07128
  • 发表时间:
    2021-01-26
  • 期刊:
  • 影响因子:
    17.1
  • 作者:
    Maingi, Vishal;Rothemund, Paul W. K.
  • 通讯作者:
    Rothemund, Paul W. K.
Branched kissing loops for the construction of diverse RNA homooligomeric nanostructures
  • DOI:
    10.1038/s41557-019-0406-7
  • 发表时间:
    2020-01-20
  • 期刊:
  • 影响因子:
    21.8
  • 作者:
    Liu, Di;Geary, Cody W.;Weizmann, Yossi
  • 通讯作者:
    Weizmann, Yossi
Absolute and arbitrary orientation of single-molecule shapes
  • DOI:
    10.1126/science.abd6179
  • 发表时间:
    2021-02-19
  • 期刊:
  • 影响因子:
    56.9
  • 作者:
    Gopinath, Ashwin;Thachuk, Chris;Rothemund, Paul W. K.
  • 通讯作者:
    Rothemund, Paul W. K.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul W.K. Rothemund其他文献

Paul W.K. Rothemund的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul W.K. Rothemund', 18)}}的其他基金

A DNA origami platform for measuring membrane protein interactions
用于测量膜蛋白相互作用的 DNA 折纸平台
  • 批准号:
    10301370
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
EMT/NANO: Integration of DNA nanotechnology with nanoelectronics
EMT/NANO:DNA 纳米技术与纳米电子学的集成
  • 批准号:
    0829951
  • 财政年份:
    2008
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似国自然基金

肝癌外周血测序数据中循环肿瘤DNA占比的精确解耦方法研究
  • 批准号:
    62303271
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
DNA双链断裂修复蛋白DNA-PKcs致病性移码突变在机体发育和肿瘤发生中的作用
  • 批准号:
    82372716
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
遗传调控的DNA甲基化在多金属复合暴露与糖尿病及其前期发生风险关联中的中介效应
  • 批准号:
    82304091
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
EndoG在小鼠精子线粒体DNA消除中的作用及机制研究
  • 批准号:
    32300953
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
精子miRNA调控早期胚胎DNA甲基化重编程介导抑郁症代际遗传的机制研究
  • 批准号:
    32370629
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Characterizing Pareto fronts: Trade-offs in the yeast growth cycle constrain adaptation
表征帕累托前沿:酵母生长周期的权衡限制了适应
  • 批准号:
    10749856
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
  • 批准号:
    10555809
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Chromatin State Alterations in Fanconi Anemia Hematologic Disease and Bone Marrow Failure
范可尼贫血血液疾病和骨髓衰竭中的染色质状态改变
  • 批准号:
    10735366
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Laser particles-based spatiotemporal and dynamic single-cell multiomics
基于激光粒子的时空和动态单细胞多组学
  • 批准号:
    10723601
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Defining Nuclear H2O2 Regulation by Covalent Regulators
通过共价调节剂定义核 H2O2 调节
  • 批准号:
    10725269
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了