SHF: SMALL: Collaborative Research: Cloud Mentoring: Guiding Cloud Users for Cost Performance through Testing and Recommendation

SHF:小型:协作研究:云指导:通过测试和推荐指导云用户提高成本绩效

基本信息

  • 批准号:
    1618310
  • 负责人:
  • 金额:
    $ 20.64万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-01 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

Cloud computing is growing rapidly, with businesses, institutions and individuals moving their workloads to clouds. Cloud users benefit from low cost ownership, a pay-as-you-go pricing model where they only pay for the procured resource usage, and the ability to dynamically scale the resource usage up and down. However, the applications running in clouds usually experience unpredictable performance, which makes it extremely challenging for the users to choose resource configurations that meet their cost and performance requirements. This problem is further complicated as users do not have physical control over cloud computers and are forced to make their decisions based on convoluted cloud performance reports.This research addresses the need to support users in achieving their cost-performance requirements as they port their applications to various cloud services. In particular, the research is embodied in an envisioned testing and recommendation system that determines proper resource management policies that meet performance and cost requirements. By taking a software-testing-based approach, the research provides solutions using only user-accessible information to satisfy user requirements, addresses the limits of static analysis techniques that rely on performance predictability.Such a testing and recommendation system enables non-experts to port their applications to various clouds in a cost effective way. The novel framework, testing and recommendation approaches, data sets, and experimental infrastructure developed within the project will be released open source to advance knowledge and understanding within software engineering and cloud computing. The PIs will continue to involve students of underrepresented groups and continue their involvement in mentoring workshops for students.
云计算正在迅速发展,企业、机构和个人将其工作负载转移到云端。云用户受益于低成本的所有权、即用即付的定价模式(只需为采购的资源使用量付费)以及动态扩展和缩减资源使用量的能力。然而,在云中运行的应用程序通常会遇到不可预测的性能,这使得用户很难选择满足其成本和性能要求的资源配置。这个问题变得更加复杂,因为用户无法对云计算机进行物理控制,并且被迫根据复杂的云性能报告做出决策。这项研究解决了支持用户在将应用程序移植到云计算机时实现其成本性能要求的需要。各种云服务。特别是,该研究体现在一个设想的测试和推荐系统中,该系统确定满足性能和成本要求的适当资源管理策略。通过采用基于软件测试的方法,该研究提供仅使用用户可访问的信息来满足用户需求的解决方案,解决了依赖于性能可预测性的静态分析技术的局限性。这样的测试和推荐系统使非专家能够移植他们以经济高效的方式将其应用到各种云中。该项目中开发的新颖框架、测试和推荐方法、数据集和实验基础设施将开源发布,以增进软件工程和云计算领域的知识和理解。 PI 将继续让代表性不足群体的学生参与,并继续参与为学生举办的指导研讨会。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Flexible VM Provisioning for Time-Sensitive Applications with Multiple Execution Options
具有多个执行选项的时间敏感型应用程序的灵活虚拟机配置
CloudInsight: Utilizing a Council of Experts to Predict Future Cloud Application Workloads
CloudInsight:利用专家委员会来预测未来的云应用程序工作负载
A Statistics-Based Performance Testing Methodology for Cloud Applications
基于统计的云应用性能测试方法
  • DOI:
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    He, Sen;Manns, Glenna;Saunders, John;Wang, Wei;Pollock, Lori;Soffa, Mary Lou
  • 通讯作者:
    Soffa, Mary Lou
Testing Cloud Applications under Cloud-Uncertainty Performance Effects
在云不确定性性能影响下测试云应用程序
iReplayer: In-situ and Identical Record-and-Replay for Multithreaded Applications
iReplayer:多线程应用程序的原位和相同的记录和重放
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lori Pollock其他文献

Analyzing CodeBERT’s Performance on Natural Language Code Search
分析 CodeBERT 在自然语言代码搜索方面的性能
  • DOI:
    10.1016/j.jss.2023.111948
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daya Guo;Shuo Ren;Shuai Lu;Zhangyin Feng;Duyu;Shujie Tang;Long Liu;Nan Zhou;Alexey Duan;Svy;Michele Fu;Shao Tufano;Kun;Colin B Deng;Dawn Clement;Neel Drain;Sundare;Emily Hill;Lori Pollock;Hamel Husain;Hongduo Wu;Tiferet Gazit;Miltiadis;Allamanis Marc;Brockschmidt. 2019;Code;Yinhan Liu;Myle Ott;Naman Goyal;Jingfei Du;M;ar Joshi;ar;Danqi Chen;Omer Levy;Mike Lewis;Alexey Junjie Huang;A. Svyatkovskiy;Colin B Blanco;Clément;dong Zhou;Linjun Shou;Long Zhou;Michele Tu;Ming Gong;Ming Zhou;Nan Duan;Shao Kun Deng;Sheng;Thomas Wolf;Lys;re Debut;re;Julien Victor Sanh;Clement Chaumond;Anthony Delangue;Pier;Tim ric Cistac;Rémi Rault;Morgan Louf;Funtow;Sam Davison;Patrick Shleifer;V. Platen;Clara Ma;Yacine Jernite;J. Plu;Canwen Xu;Teven Le Scao;Sylvain Gugger;Mariama Drame;Yonghui Wu;Mike Schuster;Zhifeng Chen;Quoc V. Le;Mohammad Norouzi;Wolfgang Macherey;Maxim;Yuan Krikun;Qin Cao;Klaus Gao;J. Macherey;Apurva Klingner;M. Shah;Xiaobing Johnson;ukasz Liu;Stephan Kaiser;Yoshikiyo Gouws;Kato;Ziyu Yao;Jayavardhan Reddy Peddamail;Pengcheng Yin;Bowen Deng;Edgar Chen;Jian Zhang;Xu Wang;Hongyu Zhang;Hailong Sun
  • 通讯作者:
    Hailong Sun
Computing for Communities: Designing Culturally Responsive Informal Learning Environments for Broadening Participation in Computing
社区计算:设计文化响应式非正式学习环境以扩大计算参与
A Virtual Professional Development Program for Computer Science Education During COVID-19
COVID-19 期间计算机科学教育虚拟专业发展计划
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    C. Mouza;H. Mead;Bataul H. Alkhateeb;Lori Pollock
  • 通讯作者:
    Lori Pollock
Exploring K-8 Teachers’ Preferences in a Teaching Augmentation System for Block-Based Programming Environments
探索 K-8 教师在基于块的编程环境的教学增强系统中的偏好
Proceedings of the 1st workshop on aspect reverse-engineering
第一届方面逆向工程研讨会论文集
  • DOI:
    10.1016/j.infsof.2018.10.001
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Tourwé;M. Bruntink;M. Marin;D. Shepherd;S. Breu;Jens Krinke;Jeffrey Palm;Lori Pollock
  • 通讯作者:
    Lori Pollock

Lori Pollock的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lori Pollock', 18)}}的其他基金

Collaborative Research: SHF: Small: Exploiting Performance Correlations for Accurate and Low-cost Performance Testing for Serverless Computing
协作研究:SHF:小型:利用性能相关性对无服务器计算进行准确且低成本的性能测试
  • 批准号:
    2155097
  • 财政年份:
    2022
  • 资助金额:
    $ 20.64万
  • 项目类别:
    Standard Grant
Collaborative Research: Minoritized Youth Computer Science Learning, Belonging and Career Interest: Coding and Creating with Beats
合作研究:少数青少年计算机科学学习、归属感和职业兴趣:用 Beats 编码和创造
  • 批准号:
    2048793
  • 财政年份:
    2021
  • 资助金额:
    $ 20.64万
  • 项目类别:
    Standard Grant
Teacher-Driven Development, Implementation, and Assessment of Integrated Computational Thinking in Grades 3-5
教师驱动的 3-5 年级综合计算思维的发展、实施和评估
  • 批准号:
    1923483
  • 财政年份:
    2019
  • 资助金额:
    $ 20.64万
  • 项目类别:
    Standard Grant
Teacher-Driven Development, Implementation, and Assessment of Integrated Computational Thinking in Grades 3-5
教师驱动的 3-5 年级综合计算思维的发展、实施和评估
  • 批准号:
    1923483
  • 财政年份:
    2019
  • 资助金额:
    $ 20.64万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Automatically Enhancing Quality of Social Communication Channels to Support Software Developers and Improve Tool Reliability
SHF:小型:协作研究:自动增强社交沟通渠道的质量以支持软件开发人员并提高工具可靠性
  • 批准号:
    1813253
  • 财政年份:
    2018
  • 资助金额:
    $ 20.64万
  • 项目类别:
    Standard Grant
Infusing Computational Thinking into General Education
将计算思维融入通识教育
  • 批准号:
    1611959
  • 财政年份:
    2016
  • 资助金额:
    $ 20.64万
  • 项目类别:
    Standard Grant
CS10K: Leveraging Partner4CS to Build Sustainable Capacity for Teacher Preparation and Support
CS10K:利用 Partner4CS 建设教师准备和支持的可持续能力
  • 批准号:
    1639649
  • 财政年份:
    2016
  • 资助金额:
    $ 20.64万
  • 项目类别:
    Standard Grant
NSF INCLUDES: WeC4Communites (We Compute for our Communities): Community-Focused Computing for Minoritized Youth
NSF 包括:WeC4Communites(我们为社区计算):针对少数群体青年的以社区为中心的计算
  • 批准号:
    1649224
  • 财政年份:
    2016
  • 资助金额:
    $ 20.64万
  • 项目类别:
    Standard Grant
Collaborative Research: Exploring Partnered Teaching of Interdisciplinary CS+X Courses
协作研究:探索跨学科CS X课程的合作教学
  • 批准号:
    1456443
  • 财政年份:
    2015
  • 资助金额:
    $ 20.64万
  • 项目类别:
    Standard Grant
Exploring Virtual Interactive Models for Large Scale Research Mentoring of Undergraduate Women in Computing
探索虚拟交互模型对计算机专业本科女性进行大规模研究指导
  • 批准号:
    1504243
  • 财政年份:
    2015
  • 资助金额:
    $ 20.64万
  • 项目类别:
    Standard Grant

相似国自然基金

小分子代谢物Catechin与TRPV1相互作用激活外周感觉神经元介导尿毒症瘙痒的机制研究
  • 批准号:
    82371229
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
DHEA抑制小胶质细胞Fis1乳酸化修饰减轻POCD的机制
  • 批准号:
    82301369
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SETDB1调控小胶质细胞功能及参与阿尔茨海默病发病机制的研究
  • 批准号:
    82371419
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
PTBP1驱动H4K12la/BRD4/HIF1α复合物-PKM2正反馈环路促进非小细胞肺癌糖代谢重编程的机制研究及治疗方案探索
  • 批准号:
    82303616
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331301
  • 财政年份:
    2024
  • 资助金额:
    $ 20.64万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 20.64万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331302
  • 财政年份:
    2024
  • 资助金额:
    $ 20.64万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Technical Debt Management in Dynamic and Distributed Systems
合作研究:SHF:小型:动态和分布式系统中的技术债务管理
  • 批准号:
    2232720
  • 财政年份:
    2023
  • 资助金额:
    $ 20.64万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Quasi Weightless Neural Networks for Energy-Efficient Machine Learning on the Edge
合作研究:SHF:小型:用于边缘节能机器学习的准失重神经网络
  • 批准号:
    2326895
  • 财政年份:
    2023
  • 资助金额:
    $ 20.64万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了