Massively-parallel Electronic Structure Calculations for Energy Applications

能源应用的大规模并行电子结构计算

基本信息

  • 批准号:
    1614491
  • 负责人:
  • 金额:
    $ 1.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-05-01 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

It has been estimated that the entire world-wide demand for energy will double in the nexttwo decades, therefore it is critical to investigate revolutionary energy technologiesto meet this demand. A potential hydrogen economy is a key player in this marketspace. However, hydrogen as a fuel requires efficient storage materials that retain and releasea great deal of hydrogen as desired. This proposal aims to use large scale and accurate quantummechanical calculations on an important class of porous hydrogen storage materials: metal-organicframeworks (MOFs). The research team will study the properties of hydrogen inside of MOFsand seek to understand their physical properties and how one can design improved MOFs thatshould deliver improved storage of hydrogen per unit weight under reasonable and real-worldoperating conditions.To understand and improve MOFs for hydrogen storage applications, it is key to study the microscopicphysical properties of MOFs that govern hydrogen uptake, release, and diffusioninside the MOFs. This requires simulation of hydrogen inside of MOFs at the atomistic scale.The project propose to perform highly accurate quantum mechanical simulations of hydrogen dynamicsinside of MOFs using first principles density functional theory to describe the electronicstate of the system coupled to molecular dynamics of the nuclear degrees of freedom includingquantum nuclear effects (via the path integral formalism). The effect due to the quantumfluctuations of the nuclear degrees of freedom are critical for understanding the bindingand dynamics of light elements such as hydrogen. The project will use this advanced and accurate theoreticalframework to address three questions of key importance to this field: (1) How do quantumnuclear effects alter hydrogen dynamics inside of MOFs? (2) How do the transition metal atomsincorporated into the MOF structure change the hydrogen binding and dynamics properties andwhich metals are best for real-world applications? (3) How does the flexibility and temperature-dependentfluctuations of the MOF framework affect hydrogen storage?The scientific outcomes of this research will be of interest and importance to researchersstudying MOFs and hydrogen storage. The aim is to provide useful understanding and informationthat may lead to the creation of materials that will help create a hydrogen economy. Theresults of the work will be published in high quality journals, presented widely at internationalconferences, and form the basis for outreach events to the broader public in order to elevategeneral interest in science and technology as well as how simulations and computations canaddress important real-world problems. Junior researchers carrying out the research workwill be trained in the use of advanced computational methods, attendant software infrastructures,and materials design approaches that are all highly useful skills in the twenty-first century.
据估计,未来二十年全球能源需求将翻一番,因此研究革命性的能源技术来满足这一需求至关重要。潜在的氢经济是这个市场空间的关键参与者。然而,氢作为燃料需要有效的存储材料,以根据需要保留和释放大量氢。该提案旨在对一类重要的多孔储氢材料:金属有机框架(MOF)进行大规模且精确的量子力学计算。研究小组将研究 MOF 内部氢的特性,并寻求了解它们的物理特性,以及如何设计改进的 MOF,从而在合理和真实的操作条件下提高每单位重量的氢存储量。了解和改进用于氢存储的 MOF在应用中,研究 MOF 的微观物理特性是控制氢在 MOF 内部吸收、释放和扩散的关键。这需要在原子尺度上模拟 MOF 内部的氢。该项目建议使用第一原理密度泛函理论对 MOF 内部的氢动力学进行高精度量子力学模拟,以描述系统的电子态与核度的分子动力学耦合。自由,包括量子核效应(通过路径积分形式主义)。核自由度的量子涨落造成的效应对于理解氢等轻元素的结合和动力学至关重要。该项目将利用这一先进而准确的理论框架来解决该领域的三个关键问题:(1)量子核效应如何改变MOF内部的氢动力学? (2) 纳入 MOF 结构的过渡金属原子如何改变氢键和动力学特性以及哪些金属最适合实际应用? (3) MOF框架的灵活性和温度依赖性波动如何影响储氢?这项研究的科学成果将对研究MOF和储氢的研究人员产生兴趣和重要性。目的是提供有用的理解和信息,可能有助于创造有助于创造氢经济的材料。这项工作的结果将发表在高质量期刊上,在国际会议上广泛展示,并构成向更广泛公众宣传活动的基础,以提高人们对科学技术以及模拟和计算如何解决重要的现实问题的普遍兴趣。开展研究工作的初级研究人员将接受先进计算方法、附带软件基础设施和材料设计方法的使用培训,这些都是二十一世纪非常有用的技能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sohrab Ismail-Beigi其他文献

Ferroelectric oxide surface chemistry: water splittingviapyroelectricity
  • DOI:
    10.1039/c6ta00513f
  • 发表时间:
    2016-03
  • 期刊:
  • 影响因子:
    11.9
  • 作者:
    Arvin Kakekhani;Sohrab Ismail-Beigi
  • 通讯作者:
    Sohrab Ismail-Beigi
Tuning two-dimensional phase formation through epitaxial strain and growth conditions: silica and silicate on NixPd1−x(111) alloy substrates
  • DOI:
    10.1039/c9nr05944j
  • 发表时间:
    2019-10
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Chao Zhou;Xin Liang;Gregory S. Hutchings;Jin-Hao Jhang;Zachary S. Fishman;Rongting Wu;Adrian Gozar;Udo D. Schwarz;Sohrab Ismail-Beigi;Eric I. Altman
  • 通讯作者:
    Eric I. Altman
Polarization-driven catalysisviaferroelectric oxide surfaces
  • DOI:
    10.1039/c6cp03170f
  • 发表时间:
    2016-06
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Arvin Kakekhani;Sohrab Ismail-Beigi
  • 通讯作者:
    Sohrab Ismail-Beigi
Causes of ferroelectricity in HfO2-based thin films: anab initioperspective
  • DOI:
    10.1039/c9cp01880h
  • 发表时间:
    2019-05
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Mehmet Dogan;Nanbo Gong;Tso-Ping Ma;Sohrab Ismail-Beigi
  • 通讯作者:
    Sohrab Ismail-Beigi

Sohrab Ismail-Beigi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sohrab Ismail-Beigi', 18)}}的其他基金

NRT-QL: Interdisciplinary Graduate Program in Quantum Materials Science and Engineering
NRT-QL:量子材料科学与工程跨学科研究生项目
  • 批准号:
    2244310
  • 财政年份:
    2023
  • 资助金额:
    $ 1.4万
  • 项目类别:
    Standard Grant
CMMT: Slave-boson approach for electronically correlated metal oxides
CMMT:电子相关金属氧化物的从属玻色子方法
  • 批准号:
    2237469
  • 财政年份:
    2022
  • 资助金额:
    $ 1.4万
  • 项目类别:
    Continuing Grant
EAGER: Enabling Quantum Leap: 2D metal oxides (2DTMOs) hosting strongly bound excitons
EAGER:实现量子飞跃:拥有强束缚激子的二维金属氧化物 (2DTMO)
  • 批准号:
    1838463
  • 财政年份:
    2018
  • 资助金额:
    $ 1.4万
  • 项目类别:
    Standard Grant
SI2-SSI: Collaborative Research: Scalable, Extensible, and Open Framework for Ground and Excited State Properties of Complex Systems
SI2-SSI:协作研究:复杂系统基态和激发态属性的可扩展、可扩展和开放框架
  • 批准号:
    1339804
  • 财政年份:
    2013
  • 资助金额:
    $ 1.4万
  • 项目类别:
    Continuing Grant
First Principles Investigations of Boron Nanostructures
硼纳米结构的第一性原理研究
  • 批准号:
    1104974
  • 财政年份:
    2011
  • 资助金额:
    $ 1.4万
  • 项目类别:
    Continuing Grant
First Principles Investigations of Boron Nanostructures
硼纳米结构的第一性原理研究
  • 批准号:
    0808665
  • 财政年份:
    2008
  • 资助金额:
    $ 1.4万
  • 项目类别:
    Continuing Grant

相似国自然基金

强流低能加速器束流损失机理的Parallel PIC/MCC算法与实现
  • 批准号:
    11805229
  • 批准年份:
    2018
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Advanced Parallel Readers for DNA Sequencing Through a 2D Nanopore
用于通过 2D 纳米孔进行 DNA 测序的高级并行读取器
  • 批准号:
    10676761
  • 财政年份:
    2022
  • 资助金额:
    $ 1.4万
  • 项目类别:
Advanced Parallel Readers for DNA Sequencing Through a 2D Nanopore
用于通过 2D 纳米孔进行 DNA 测序的高级并行读取器
  • 批准号:
    10676761
  • 财政年份:
    2022
  • 资助金额:
    $ 1.4万
  • 项目类别:
Advanced Parallel Readers for DNA Sequencing Through a 2D Nanopore
用于通过 2D 纳米孔进行 DNA 测序的高级并行读取器
  • 批准号:
    10437327
  • 财政年份:
    2022
  • 资助金额:
    $ 1.4万
  • 项目类别:
Scalable Bayesian methods for big imaging data analysis
用于大成像数据分析的可扩展贝叶斯方法
  • 批准号:
    10669008
  • 财政年份:
    2020
  • 资助金额:
    $ 1.4万
  • 项目类别:
Scalable Bayesian methods for big imaging data analysis
用于大成像数据分析的可扩展贝叶斯方法
  • 批准号:
    10451601
  • 财政年份:
    2020
  • 资助金额:
    $ 1.4万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了