Terahertz Quantum Electronics of Carbon Nanostructures: Population Inversion, Gain and Coherent Bandgap Engineering
碳纳米结构的太赫兹量子电子学:粒子数反转、增益和相干带隙工程
基本信息
- 批准号:1611454
- 负责人:
- 金额:$ 37.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The challenge of pushing the switching speed-limit and integration density of today's logic and modulation devices into the terahertz (one trillion cycles per second) and sub-20 nanometer regime underlies the entire field of information processing, recording and communication. This challenge may be met by a novel paradigm of terahertz quantum nano-electronics based on ultrafast coherent laser pumping in graphene - one atom thick, the honeycomb-shaped carbon material - and single-walled carbon nanotubesthe rolled-up sheets of graphene monolayers. Researchers will use short pulsed terahertz light, outside the visible spectrum, and an ultrafast camera technique to directly monitor the formation and time evolution of photo-excited states in these carbon nanomaterials. This novel method will allow them to capture and control their novel electromagnetic properties on the femtosecond scale, or to one quadrillionth of a second. The results will open fascinating opportunities to demonstrate their significant potential to advance, e.g., above-gigahertz light modulators, broadband gain mediums from the infrared to terahertz, radiation controlled hot-electron transistors, multi-functional devices responding to ultrabroadband electromagnetic radiations from the terahertz to visible frequency. Our success in this "ultrafast" and "ultrasmall" challenge will reveal as-yet-undiscovered physical processes for developing new generation optoelectronic device and offer perspectives for sustaining the information revolution and the 21st century's digital economy. Education is an integral and essential component in this proposal. It consists of interconnected, specific plans for education that span small college professors/undergraduates, "A Physics Day" program for high school teachers and their students; outreach to underrepresented minority students and provision of research/training opportunities to them.How coherent photoexcitations control excitonic bosons in single-walled carbon nanotubes and Dirac fermions in graphene monolayers is among the most fundamental, yet cross-cutting, issues in quantum and optoelectronic technologies. The proposal aims to explore some remarkable laser-driven quantum processes in these carbon nanostructures and demonstrate their significant potential for device applications. The primary goals are: to determine broadband gain spectrum and threshold in strongly photoexcited graphene monolayers; to demonstrate coherently photo-driven, bandgap opening near the Dirac cone using intense terahertz pulses; to investigate extreme mid-infrared and far-infrared nonlinear wave mixing in graphene; to achieve terahertz stimulated emission in single-walled carbon nanotubes using two-photon excited, dark exciton states. The approach for the timely advancement lies in the combination of ultrashort terahertz pulses, specially fabricated, high quality mono- and few-layer graphene and carbon nanotubes, and ultra-broadband probe capability from the terahertz to visible spectral regions. This proposal has identified compelling opportunities to advance one of the most poorly- addressed territories in some most exciting materials today dynamical, non-equilibrium, and nonlinear aspects of carbon nanostructures. The targeting problems are in the boundaries of several frontiers such as quantum optical control of matter, terahertz electrical transport, and ultrafast optoelectronic technology. Although sophisticated theoretical studies have been underway, the experimental schemes for exploring a wide range of the predicted fundamental phenomena, as proposed, have lagged behind. These original results are transformative, opening the possibility for graphene- and carbon nanotube- based above-terahertz speed modulators, saturable absorbers, ultra-broadband gain medium.
将当今逻辑和调制设备的开关速度限制和集成密度推入Terahertz(每秒1万亿个循环)和低于20纳米制度的挑战是整个信息处理,记录和通信的整个领域。基于超快相干激光泵送的Terahertz量子纳米电子电源的新型范式可以应对这一挑战 - 一种原子厚,蜂窝状的碳材料和单壁碳纳米管纳米蛋白蛋白胶质的碳note胶滚动的石墨烯单层滚滚板。研究人员将使用短脉冲的Terahertz光,可见光频谱外部和超快摄像头技术直接监测这些碳纳米材料中光激发状态的形成和时间演变。这种新颖的方法将使他们能够在飞秒尺度上捕获和控制其新颖的电磁特性,或者占一秒钟的四分之一。结果将为展示其前进的巨大潜力,例如高于gigahertz的光调制器,从红外线到terahertz,辐射控制的热电子晶体管,多功能设备,对Terahertz从Terahertz到可见频率响应的多功能设备。我们在这个“超快”和“超大挑战”挑战方面的成功将揭示出尚未发现的物理过程,以开发新一代的光电设备,并为维持信息革命和21世纪的数字经济提供了观点。教育是该提案中不可或缺的组成部分。它由跨越小学教授/本科生的互连,具体的教育计划组成,这是针对高中教师及其学生的“物理日”计划;向代表性不足的少数族裔学生提供宣传,并向他们提供研究/培训机会。如何控制单壁碳纳米管中的激子玻色子和石墨烯单层中的迪拉克·费米子(Dirac Fermions)是最基本的,但最基本的,但在量子和光学技术方面的交叉,问题,却是交叉的,问题。该提案旨在探索这些碳纳米结构中的一些显着激光驱动的量子过程,并证明它们在设备应用中的重要潜力。主要目标是:确定宽带增益光谱和强烈光激发的石墨烯单层中的阈值;为了证明相干照相驱动的,使用强烈的Terahertz脉冲在Dirac锥附近开口的带隙开口;研究石墨烯中极端的中红外和远红外非线性波混合;为了实现Terahertz,使用双光子激发的深色激子状态刺激单壁碳纳米管中的发射。及时进步的方法在于超短型Terahertz脉冲,特殊制造的,高质量的单层石墨烯和碳纳米管以及从Terahertz到可见光谱区域的超大频带探针能力。该提案已经确定了令人信服的机会,可以在当今一些最令人兴奋的材料中推进最糟糕的领土之一,这是碳纳米结构的动力学,非平衡和非线性方面。目标问题在几个边界的边界中,例如物质的量子光学控制,Terahertz电运和超快光电技术。尽管已经进行了复杂的理论研究,但探索广泛的预测基本现象的实验方案已落后。这些原始结果具有变革性,为基于石墨烯和碳纳米管的速度调节剂,可饱和吸收剂,超宽带增益培养基的可能性打开了可能性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jigang Wang其他文献
All-optical four-state magnetization reversal in (Ga,Mn)As ferromagnetic semiconductors
(Ga,Mn)As铁磁半导体中的全光四态磁化反转
- DOI:
10.1063/1.3634031 - 发表时间:
2011 - 期刊:
- 影响因子:4
- 作者:
M. Kapetanakis;P. Lingos;Carlo Piermarocchi;Jigang Wang;I. Perakis - 通讯作者:
I. Perakis
BCN nanosheets templated by g-C3N4 for high performance capacitive deionization
以 g-C3N4 为模板的 BCN 纳米片用于高性能电容去离子
- DOI:
10.1039/c8ta04058c - 发表时间:
2018-07 - 期刊:
- 影响因子:11.9
- 作者:
Shiyong Wang;Gang Wang;Tingting Wu;Yunqi Zhang;Fei Zhan;Yuwei Wang;Jigang Wang;Yu Fu;Jieshan Qiu - 通讯作者:
Jieshan Qiu
Method for Solving Bunch Head-Tail Overlapping in Hls-Ii Using New Trigger Scanning Module of the Streak Camera Measurement System
利用条纹相机测量系统新型触发扫描模块解决HLS-II中束首尾重叠的方法
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yunkun Zhao;Sanshuang Jin;Ruihan Wu;Fangfang Wu;Tianyu Zhou;Ping Lu;Jigang Wang;Baogen Sun - 通讯作者:
Baogen Sun
Effect of droplet spacing on micro-explosion and combustion characteristics of multi-component fuel droplet cluster
液滴间距对多组分燃料液滴簇微爆炸和燃烧特性的影响
- DOI:
10.1016/j.fuel.2024.132323 - 发表时间:
2024 - 期刊:
- 影响因子:7.4
- 作者:
Jing Xu;Suhang Shi;Jiaqi Li;Jigang Wang - 通讯作者:
Jigang Wang
Rhabdomyoma of the pleura: a case report.
胸膜横纹肌瘤:病例报告。
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:2.5
- 作者:
Wei Wang;Ying;Yuli Dong;Jigang Wang;D. Lin;Cong Luo;Li Zhang;X. Ji;Yan Wang - 通讯作者:
Yan Wang
Jigang Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jigang Wang', 18)}}的其他基金
Light Control of Superconductivity by Subcycle Dynamic Symmetry Breaking
亚周期动态对称性破缺对超导的光控制
- 批准号:
1905981 - 财政年份:2019
- 资助金额:
$ 37.72万 - 项目类别:
Standard Grant
CAREER: Ultrafast Magnetism in Complex Materials: Coherent and Cooperative Phenomena
职业:复杂材料中的超快磁性:相干和协作现象
- 批准号:
1055352 - 财政年份:2011
- 资助金额:
$ 37.72万 - 项目类别:
Continuing Grant
相似国自然基金
量子启发的复合语义视频实例检索技术研究
- 批准号:62372339
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于量子Cramer-Rao极限的非厄米及开放系统量子感知研究
- 批准号:12305031
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
倾斜光晶格超冷原子体系中的量子各态历经破缺及其调控
- 批准号:12305048
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
层间耦合强化对转角双层过渡金属硫化物的量子物态调控研究
- 批准号:12304540
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
彭罗斯准晶中强关联量子多体系统的蒙特卡罗研究
- 批准号:12304171
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Catalytically Generated Amidyl Radicals for Site-Selective Intermolecular C-H Functionalization
催化生成酰胺自由基用于位点选择性分子间 C-H 官能化
- 批准号:
10679463 - 财政年份:2023
- 资助金额:
$ 37.72万 - 项目类别:
Creation of quantum molecular electronics by fusion of advanced materials chemistry a nd quantum solid-state physics
通过先进材料化学和量子固体物理学的融合创造量子分子电子学
- 批准号:
23K20039 - 财政年份:2023
- 资助金额:
$ 37.72万 - 项目类别:
Fund for the Promotion of Joint International Research (International Leading Research )
Quantum electronics based on hybrid super/semi-conductor devices
基于混合超/半导体器件的量子电子学
- 批准号:
2889090 - 财政年份:2023
- 资助金额:
$ 37.72万 - 项目类别:
Studentship
Development of a combined Gamma/Positron system for molecular imaging of the human brain at sub-500 micron spatial resolution
开发伽玛/正电子组合系统,用于以亚 500 微米空间分辨率对人脑进行分子成像
- 批准号:
10722205 - 财政年份:2023
- 资助金额:
$ 37.72万 - 项目类别:
Understanding electronically non-adiabatic reactions in biomolecules with multiscale simulations
通过多尺度模拟了解生物分子中的电子非绝热反应
- 批准号:
10714663 - 财政年份:2023
- 资助金额:
$ 37.72万 - 项目类别: