Optimizing Energy Management in Microgrids with Datacenters: An Integrated Approach
优化数据中心微电网的能源管理:综合方法
基本信息
- 批准号:1610471
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-15 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Microgrids are localized grids that have become an integral component of future smart grids. Meanwhile, datacenters have been expanding enormously to support the exploding digital economy worldwide, emerging as significant energy consumers that are commonly co-located with a diverse set of non-datacenter loads in microgrids. Nonetheless, prior research on datacenter energy management, although encouraging, has traditionally viewed datacenters as isolated stand-alone facilities and rarely considered their physical interconnection with other loads. On the other hand, the rich literature on microgrid energy management has primarily focused on non-datacenter loads (e.g., thermostatically controlled loads), while treating energy-intensive datacenters as miscellaneous loads and ignoring their unique global-routing capabilities. This lack of integration and coordination between datacenter and non-datacenter loads poses a series of challenges to microgrid management, such as high peak demand, waste of on-site renewables, and even potential threats to the stability of main grids. This project seeks to address the challenges and optimize microgrid energy management for minimizing the energy cost and facilitating demand responses to better protect the main grid. Towards this end, this project takes a transformative shift from the current view that treats datacenter and non-datacenter loads separately, to an integrated approach that holistically coordinates both datacenter and non-datacenter loads in microgrids. Specifically, this project investigates two complementary research thrusts. First, when the microgrid operator can directly schedule the loads, this project investigates novel control algorithms to holistically manage both datacenter and non-datacenter loads, while taking into account datacenters spatial-routing and heterogeneous communications capabilities. Second, when the loads are managed by self-interested entities, this project studies market mechanisms to coordinate both datacenter and non-datacenter loads for microgrid-level efficiency.This project advances the existing research on microgrid energy management by transforming datacenters' role in microgrids from miscellaneous loads into a valuable asset with high scheduling flexibilities. It can catalyze a shift in the way that microgrids evolve, bearing great economic, environmental and societal impacts. This project will also incorporate the research into existing courses and provide abundant opportunities to nurture and attract students, especially those from under-represented groups, to engage in research careers.
微电网是局部网格,已成为未来智能电网的组成部分。同时,数据中心一直在广泛扩展,以支持全球爆炸的数字经济,成为了重要的能源消费者,这些消费者通常与微电网中各种非dateCenter载荷共同列入。尽管如此,关于数据中心能源管理的事先研究尽管令人鼓舞,但传统上一直将数据中心视为孤立的独立设施,很少考虑其与其他负载的物理互连。另一方面,有关微电网能源管理的丰富文献主要集中在非围次载荷(例如,恒温控制的负载)上,同时将能源密集型数据中心视为其他载荷并忽略了其独特的全球透视功能。数据中心和非纳入人物负载之间缺乏整合和协调,给微电网管理带来了一系列挑战,例如高峰需求,浪费了现场可再生能源,甚至可能对主要网格稳定性的潜在威胁。该项目旨在应对挑战并优化微电网能源管理,以最大程度地降低能源成本并促进需求响应以更好地保护主要电网。为此,该项目从当前的视图分别处理数据中心和非传统载荷的当前视图转变为一种集成方法,该方法可以整体协调数据中心和非datacenter载荷。具体而言,该项目研究了两个互补的研究推力。首先,当微电网操作员可以直接安排负载时,该项目会研究新颖的控制算法,以整体管理数据中心和非纳入负载,同时考虑到数据中心的空间路由和异质通信功能。其次,当负载由自我利益实体管理时,该项目的市场机制可以协调微电流级效率的数据中心和非datacenter载荷。该项目通过将数据中心在微电流中的作用转化为有价值的柔韧性,通过将数据中心在微电流中的作用转化为微电流的作用,从而推进了微电能管理的现有研究。它可以催化微电网发展的方式,具有巨大的经济,环境和社会影响。该项目还将将研究纳入现有课程中,并为培育和吸引学生,尤其是代表性不足的学生从事研究职业的学生提供丰富的机会。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Increasing the Trustworthiness of Deep Neural Networks via Accuracy Monitoring
- DOI:
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:Zhihui Shao;Jianyi Yang;Shaolei Ren
- 通讯作者:Zhihui Shao;Jianyi Yang;Shaolei Ren
On the Latency Variability of Deep Neural Networks for Mobile Inference
关于移动推理深度神经网络的延迟可变性
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Yang, Luting;Lu, Bingqian;Ren, Shaolei
- 通讯作者:Ren, Shaolei
Multi-Feedback Bandit Learning with Probabilistic Contexts
- DOI:10.24963/ijcai.2020/427
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:Da Yu;Huishuai Zhang;Wei Chen;Tie-Yan Liu;Jian Yin
- 通讯作者:Da Yu;Huishuai Zhang;Wei Chen;Tie-Yan Liu;Jian Yin
Automating Deep Neural Network Model Selection for Edge Inference
- DOI:10.1109/cogmi48466.2019.00035
- 发表时间:2019-12
- 期刊:
- 影响因子:0
- 作者:Bingqian Lu;Jianyi Yang;L. Chen;Shaolei Ren
- 通讯作者:Bingqian Lu;Jianyi Yang;L. Chen;Shaolei Ren
DeepPM: Efficient Power Management in Edge Data Centers using Energy Storage
- DOI:10.1109/cloud49709.2020.00058
- 发表时间:2020-10
- 期刊:
- 影响因子:0
- 作者:Zhihui Shao;Mohammad A. Islam;Shaolei Ren
- 通讯作者:Zhihui Shao;Mohammad A. Islam;Shaolei Ren
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shaolei Ren其他文献
Title Extending Demand Response to Tenants in Cloud Data Centers via Non-intrusive Workload Flexibility Pricing Permalink
标题 通过非侵入式工作负载灵活性定价将需求响应扩展到云数据中心的租户 永久链接
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Yong Zhan;Shaolei Ren - 通讯作者:
Shaolei Ren
TECH: A Thermal-Aware and Cost Efficient Mechanism for Colocation Demand Response
技术:用于主机代管需求响应的热感知且经济高效的机制
- DOI:
10.1109/icpp.2016.60 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Ziqi Zhao;Fan Wu;Shaolei Ren;Xiaofeng Gao;Guihai Chen;Yong Cui - 通讯作者:
Yong Cui
Managing Power Capacity as a First-Class Resource in Multitenant Data Centers
- DOI:
10.1109/mic.2017.2911417 - 发表时间:
2017 - 期刊:
- 影响因子:3.2
- 作者:
Shaolei Ren - 通讯作者:
Shaolei Ren
GreenColo : Incentivizing Tenants for Reducing Carbon Footprint in Colocation Data Centers
GreenColo:激励租户减少托管数据中心的碳足迹
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
M. A. Islam;H. Mahmud;Shaolei Ren;Xiaorui Wang;Haven Wang;Joseph Scott - 通讯作者:
Joseph Scott
Optimizing Water Efficiency in Distributed Data Centers
- DOI:
10.1109/cgc.2013.19 - 发表时间:
2013-09 - 期刊:
- 影响因子:0
- 作者:
Shaolei Ren - 通讯作者:
Shaolei Ren
Shaolei Ren的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shaolei Ren', 18)}}的其他基金
Collaborative Research: DESC: Type I: A User-Interactive Approach to Water Management for Sustainable Data Centers: From Water Efficiency to Self-Sufficiency
合作研究:DESC:类型 I:可持续数据中心水资源管理的用户交互方法:从用水效率到自给自足
- 批准号:
2324916 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
DESC: Type I: Enabling Carbon-Zero Colocation Data Centers via Agile and Coordinated Resource Management
DESC:类型 I:通过敏捷和协调的资源管理实现零碳托管数据中心
- 批准号:
2324941 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Securing Brain-inspired Hyperdimensional Computing against Design-time and Run-time Attacks for Edge Devices
协作研究:SaTC:核心:小型:保护类脑超维计算免受边缘设备的设计时和运行时攻击
- 批准号:
2326598 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Small: Towards Automated and QoE-driven Machine Learning Model Selection for Edge Inference
合作研究:CNS 核心:小型:面向边缘推理的自动化和 QoE 驱动的机器学习模型选择
- 批准号:
2007115 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CNS: Small: Towards Intelligent, Coordinated and Scalable Management of Server Sprinting in Edge Data Centers
CNS:小型:迈向边缘数据中心服务器冲刺的智能、协调和可扩展管理
- 批准号:
1910208 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Coordinated Power Management in Colocation Data Centers
职业:托管数据中心的协调电源管理
- 批准号:
1551661 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CAREER: Coordinated Power Management in Colocation Data Centers
职业:托管数据中心的协调电源管理
- 批准号:
1453491 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CSR: Small: Improving Data Center Water Efficiency via Online Resource Management
CSR:小型:通过在线资源管理提高数据中心用水效率
- 批准号:
1565474 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CSR: Small: Improving Data Center Water Efficiency via Online Resource Management
CSR:小型:通过在线资源管理提高数据中心用水效率
- 批准号:
1423137 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
西北旱区制种玉米产量与种子活力协同提升的区域分布式水氮管理优化研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
西北旱区制种玉米产量与种子活力协同提升的区域分布式水氮管理优化研究
- 批准号:52209072
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
大中型企业活力的管理问题与案例研究
- 批准号:79070047
- 批准年份:1990
- 资助金额:2.0 万元
- 项目类别:面上项目
对健全企业经营机制,增强大中型企业活力的研究
- 批准号:78870017
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
增强企业活力理论和实践的比较研究
- 批准号:78870070
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Blackstone Energy Services Inc.: Optimizing local enterprise energy management through incentivization of electric vehicle driver vehicle-to-grid contributions.
Blackstone Energy Services Inc.:通过激励电动汽车驾驶员车辆对电网的贡献来优化当地企业的能源管理。
- 批准号:
CCARD-2022-00296 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
CCI Applied Research and Development Grants
CAREER: UrbanEMOS: An Urban Energy Management Operating System for understanding and co-optimizing building, energy and human systems at multiple scales
职业:UrbanEMOS:城市能源管理操作系统,用于在多个尺度上理解和共同优化建筑、能源和人类系统
- 批准号:
1941695 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Novel energy management architectures for optimizing energy utilization in data centres
用于优化数据中心能源利用的新型能源管理架构
- 批准号:
519792-2017 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Collaborative Research and Development Grants
SBIR Phase I: Estimating, Learning, and Optimizing Real-Time Carbon Emissions for Energy and Sustainability Management
SBIR 第一阶段:估算、学习和优化实时碳排放,以实现能源和可持续发展管理
- 批准号:
1938082 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Novel energy management architectures for optimizing energy utilization in data centres
用于优化数据中心能源利用的新型能源管理架构
- 批准号:
519792-2017 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Collaborative Research and Development Grants