COLLABORATIVE RESEARCH: Data-Driven Risk-Averse Models and Algorithms for Power Generation Scheduling with Renewable Energy Integration

合作研究:数据驱动的可再生能源发电调度风险规避模型和算法

基本信息

  • 批准号:
    1609794
  • 负责人:
  • 金额:
    $ 20.43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

Renewable energy has been increasingly penetrating into the power grid system during the past years due to its contribution toward cleaner and lower-polluting American energy. Meanwhile, however, its intermittent nature brings challenges to power system operators. One challenging problem is how to derive a cost-effective and reliable power generation scheduling for thermal units in a short time to accommodate renewable generation uncertainties. The other outstanding question is how the data collected by the renewable facilities and intelligent devices can be transformed into valuable information and actionable insights in the decision-making process. To help address these challenges, this project aims to explore innovative data-driven optimization models and develop corresponding intelligent algorithms, as well as the implementation of the algorithms in high-performance computing facilities, to achieve cost-effective and robust daily power system operations. If successful, the proposed innovative approaches can be implemented in the industry in a short time and help improve current operations practices. The results of research outcomes will be incorporated into course works, which will train students to utilize cutting edge data-driven optimization methods to solve upfront power system problems with renewable energy integration. Educational activities also include outreach to K-12 students to promote science and engineering and to under-represented minorities in all aspects of this research effort. The proposed creative approach integrates statistical and optimization methods to derive innovative decision-making under uncertainty models for optimal power flow and unit commitment problems incorporating demand response and renewable energy. It provides one of the first studies on data-driven optimization addressing distributional ambiguity for power system operations. Starting from a given set of historical data, a confidence set for the true unknown distribution is constructed and accordingly data-driven risk-averse optimization models are developed for both system operators and market participants. Besides ensuring system robustness, the advantage of this approach is that the conservatism of the proposed model is adjustable based on the amount of historical data and eventually vanishes as the size of historical data goes to infinity. Also, the proposed advanced techniques in strengthening the formulation by exploring the problem structure and decomposition algorithms implementable at high-performance computing facilities can help improve the computational efficiency to solve the derived models. Finally, integration of innovative data-driven optimization models and development of efficient algorithms will enrich the tool set and advance the cutting edge technology to solve power generation scheduling problems under uncertainty.
在过去几年中,由于其对清洁和降低的美国能源的贡献,可再生能源在过去几年中越来越多地渗透到电网系统中。但是,与此同时,其间歇性的性质给电力系统运营商带来了挑战。一个具有挑战性的问题是如何在短时间内为热单元提供具有成本效益且可靠的发电计划,以适应可再生生成的不确定性。另一个杰出的问题是,如何将可再生设施和智能设备收集的数据转换为决策过程中有价值的信息和可行的见解。为了帮助应对这些挑战,该项目旨在探索创新的数据驱动优化模型,并开发相应的智能算法,以及在高性能计算设施中实施算法,以实现成本效益和强大的日常电力系统操作。如果成功,则可以在短时间内在行业中实施拟议的创新方法,并有助于改善当前的运营实践。研究成果的结果将纳入课程工作,该课程将培训学生利用尖端数据驱动的优化方法来解决可再生能源集成的前期电力系统问题。教育活动还包括向K-12学生推广,以促进科学和工程学以及在这项研究工作的各个方面的代表性不足的少数民族。提出的创意方法集成了统计和优化方法,以在不确定性模型下得出创新的决策,以实现最佳功率流和单位承诺问题,并结合了需求响应和可再生能源。它提供了有关数据驱动优化的最早研究,以解决电力系统操作的分布歧义。从给定的一组历史数据开始,构建了针对真实未知分布的置信度集合,并为系统运营商和市场参与者开发了相应的数据驱动风险优化模型。除了确保系统鲁棒性外,这种方法的优点是,根据历史数据的数量,该模型的保守性是可以调节的,并且随着历史数据的规模流向无穷大。同样,通过探索可在高性能计算设施中实现的问题结构和分解算法来增强配方的提议高级技术可以帮助提高计算效率以解决衍生模型。最后,创新数据驱动的优化模型和有效算法的开发的整合将丰富工具集并推进尖端技术,以解决不确定性下的发电计划问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yongpei Guan其他文献

Stochastic lot-sizing with backlogging: computational complexity analysis
  • DOI:
    10.1007/s10898-010-9555-3
  • 发表时间:
    2011-04
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Yongpei Guan
  • 通讯作者:
    Yongpei Guan
An Edge-Based Formulation for Combined-Cycle Units
联合循环机组基于边缘的公式
Pediatric Cardiac Intensive Care – Postoperative Management: Nursing Considerations
儿科心脏重症监护 – 术后管理:护理注意事项
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Lincoln;J. Ahern;Nancy J. Braudis;L. Brown;Kevin J Bullock;Janine Evans;Yongpei Guan;Wen;Nanping Sheng;M. Schroeder
  • 通讯作者:
    M. Schroeder
A Polynomial Time Algorithm for the Stochastic Uncapacitated Lot-Sizing Problem with Backlogging
具有积压的随机无容量批量问题的多项式时间算法
An O(N2)-time algorithm for the stochastic uncapacitated lot-sizing problem with random lead times
具有随机交付时间的随机无容量批量问题的 O(N2) 时间算法
  • DOI:
    10.1016/j.orl.2010.10.004
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Ruiwei Jiang;Yongpei Guan
  • 通讯作者:
    Yongpei Guan

Yongpei Guan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yongpei Guan', 18)}}的其他基金

EAGER: Data-Driven Susceptible-Exposed-Infected-Recovered-Infected (SEIRI) Modeling and Hospital Planning and Operations for COVID-19 Pandemic
EAGER:针对 COVID-19 大流行的数据驱动的易感-暴露-感染-恢复-感染 (SEIRI) 建模以及医院规划和运营
  • 批准号:
    2027677
  • 财政年份:
    2020
  • 资助金额:
    $ 20.43万
  • 项目类别:
    Standard Grant
Collaborative Research: Travel Support for Students to Attend the Industrial and Systems Engineering Research Conference (ISERC) 2014; Montreal, Canada; 31 May to 3 June 2014
合作研究:为学生参加 2014 年工业与系统工程研究会议 (ISERC) 提供差旅支持;
  • 批准号:
    1434256
  • 财政年份:
    2014
  • 资助金额:
    $ 20.43万
  • 项目类别:
    Standard Grant
Plug-in Hybrid Electric Vehicles and Electricity Markets
插电式混合动力汽车和电力市场
  • 批准号:
    1436749
  • 财政年份:
    2014
  • 资助金额:
    $ 20.43万
  • 项目类别:
    Standard Grant
Chance-Constrained and Robust Optimization for Power Systems with Intermittent Renewable Generation
间歇性可再生能源发电电力系统的机会约束和鲁棒优化
  • 批准号:
    1202264
  • 财政年份:
    2012
  • 资助金额:
    $ 20.43万
  • 项目类别:
    Standard Grant
Polyhedral Combinatorics and Algorithms for Stochastic Integer Programming
随机整数规划的多面体组合和算法
  • 批准号:
    0942154
  • 财政年份:
    2009
  • 资助金额:
    $ 20.43万
  • 项目类别:
    Standard Grant
CAREER: A Study of Stochastic and Robust Integer Programming: Algorithms, Computations and Applications
职业:随机和鲁棒整数规划研究:算法、计算和应用
  • 批准号:
    0942156
  • 财政年份:
    2009
  • 资助金额:
    $ 20.43万
  • 项目类别:
    Standard Grant
CAREER: A Study of Stochastic and Robust Integer Programming: Algorithms, Computations and Applications
职业:随机和鲁棒整数规划研究:算法、计算和应用
  • 批准号:
    0748204
  • 财政年份:
    2008
  • 资助金额:
    $ 20.43万
  • 项目类别:
    Standard Grant
Polyhedral Combinatorics and Algorithms for Stochastic Integer Programming
随机整数规划的多面体组合和算法
  • 批准号:
    0700868
  • 财政年份:
    2007
  • 资助金额:
    $ 20.43万
  • 项目类别:
    Standard Grant

相似国自然基金

面向车联网网络流量数据的多方协作学习风险控制机制研究
  • 批准号:
    62373094
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于多组学数据的DNA甲基化与组蛋白修饰协作调控研究
  • 批准号:
    62371347
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
数据物理驱动的车间制造服务协作可靠性机理与优化方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
网络空间中基于泛配置类数据的协作性恶意行为识别研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
基于网络化云边融合的多移动机器人协作数据驱动控制方法研究
  • 批准号:
    62103138
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
  • 批准号:
    2325311
  • 财政年份:
    2024
  • 资助金额:
    $ 20.43万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 20.43万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347345
  • 财政年份:
    2024
  • 资助金额:
    $ 20.43万
  • 项目类别:
    Standard Grant
Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
  • 批准号:
    2402555
  • 财政年份:
    2024
  • 资助金额:
    $ 20.43万
  • 项目类别:
    Standard Grant
Collaborative Research: GEO OSE Track 2: Developing CI-enabled collaborative workflows to integrate data for the SZ4D (Subduction Zones in Four Dimensions) community
协作研究:GEO OSE 轨道 2:开发支持 CI 的协作工作流程以集成 SZ4D(四维俯冲带)社区的数据
  • 批准号:
    2324714
  • 财政年份:
    2024
  • 资助金额:
    $ 20.43万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了