CSEDI Collaborative Research: Experimental and Theoretical Investigations on the Elastic and Viscoelastic Properties of Fe-Ni-C Liquids
CSEDI合作研究:Fe-Ni-C液体弹性和粘弹性的实验和理论研究
基本信息
- 批准号:1565708
- 负责人:
- 金额:$ 26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-15 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Earth's core, the most remote and dynamic part of our planet, is composed of liquid iron alloys solidified at its center. The nature and dynamics of the core are closely related to manifold geophysical problems such as the driving force of mantle convection, the geodynamo, and planetary evolution. The core is predominantly iron (Fe) alloyed with 5-10% nickel (Ni) and some lighter elements, such as sulfur (S), silicon (Si), carbon (C), oxygen (O), and hydrogen (H). The knowledge of the properties of Fe-rich alloys and liquids under relevant core conditions is a prerequisite for understanding the composition, thermal state and dynamics of the core. In comparison to crystalline iron alloys for the inner core, there exists a remarkable lack of data on liquid properties of iron-rich alloys due to experimental challenges, which have been investigated at conditions far below those expected for the outer core. The lack of data on liquid properties and great challenges facing experimental investigations under relevant core conditions are expected to continue in the foreseeable future. This prompts the team to adopt a synergistic approach by integrating experiments at experimentally-achievable pressures with computations up to core conditions. The focus of this collaborative research will be on the elastic and viscoelastic properties of Fe-Ni-C liquids under high pressures through the synergy between experiment and theory. This approach for investigating liquid properties represents a potential methodology for studying liquid properties under extreme conditions, so as to speculate on the suitability of such combined efforts for similar high-pressure liquid state physics research. The proposed research offers a unique opportunity to engage graduate and undergraduate students to utilize state-of-the-art experimental techniques and computational tools at multi-scale facilities (departmental, university, and national laboratory) for solving fundamental problems in an active research area.The elastic and viscoelastic properties of Fe-Ni-C liquids will be investigated at high pressures by experimental techniques such as X-ray absorption, ultrasonic interferometry, X-ray diffraction, and X-ray viscometry, in combination with computational techniques, to establish a comprehensive mineral physics database on the density, sound velocity, viscosity, and structure of the liquids in a previously uncharted pressure-temperature-composition sector. The laboratory data will provide an important foundation on which the interpretation of ultrahigh pressure laboratory data and theoretical data will be based. The low-pressure data will be used to benchmark and validate results from theoretical calculations at low-pressure, and the higher-pressure calculation results will be used to estimate and predict liquid properties under core conditions. Such a methodology largely eliminates errors often induced in long extrapolations from low-pressure to core pressures, and identifies prospective biases in theoretical calculations. High pressure-temperature behaviors of the iron-rich liquids by the synergistic efforts from laboratory experiments and theoretical calculations will help improve our understanding of the physics and chemistry of the core. Stringent tests of carbon-rich core composition models for the outer core will be performed based on the liquid properties determined from this research. The outcome of the proposed projects, i.e., structure, density, sound velocity, and viscosity of core materials, will become essential parts of the study on carbon reservoirs and deep carbon cycle in the Earth and planetary interiors. The new experimental data could also be readily used in the discussion of planetary cores, such as the lunar core. The team is committed to disseminating the results through peer-reviewed journal publications and to publicizing their work to their local and greater communities through news releases, public lectures, and their research websites.
地核是地球上最遥远、最活跃的部分,由在其中心凝固的液态铁合金组成。地核的性质和动力学与地幔对流驱动力、地球发电机、行星演化等多种地球物理问题密切相关。核心主要是铁 (Fe),并含有 5-10% 的镍 (Ni) 和一些较轻的元素,例如硫 (S)、硅 (Si)、碳 (C)、氧 (O) 和氢 (H) 。了解相关堆芯条件下富铁合金和液体的特性是了解堆芯的成分、热状态和动力学的先决条件。与内核的结晶铁合金相比,由于实验挑战,富铁合金的液体特性明显缺乏数据,这些实验的条件远远低于外核的预期条件。在可预见的未来,液体特性数据的缺乏以及相关核心条件下的实验研究面临的巨大挑战预计将继续存在。这促使团队采用协同方法,将实验可实现的压力下的实验与核心条件的计算相结合。 这项合作研究的重点将是通过实验和理论的协同作用来研究高压下 Fe-Ni-C 液体的弹性和粘弹性能。这种研究液体性质的方法代表了一种研究极端条件下液体性质的潜在方法,从而推测这种联合努力是否适合类似的高压液态物理研究。拟议的研究提供了一个独特的机会,让研究生和本科生在多规模设施(部门、大学和国家实验室)利用最先进的实验技术和计算工具来解决活跃研究领域的基本问题通过X射线吸收、超声干涉、X射线衍射、X射线粘度测定等实验技术,结合计算技术,研究高压下Fe-Ni-C液体的弹性和粘弹性特性,建立综合矿物物理学关于以前未知的压力-温度-成分领域中液体的密度、声速、粘度和结构的数据库。实验室数据将为超高压实验室数据和理论数据的解释提供重要基础。低压数据将用于对低压理论计算结果进行基准测试和验证,高压计算结果将用于估计和预测岩心条件下的液体特性。这种方法在很大程度上消除了从低压到核心压力的长时间外推中经常引起的错误,并识别了理论计算中的预期偏差。通过实验室实验和理论计算的协同努力,富铁液体的高压-温度行为将有助于提高我们对地核物理和化学的理解。将根据本研究确定的液体特性对外核的富碳核心成分模型进行严格的测试。拟议项目的成果,即核心材料的结构、密度、声速和粘度,将成为地球和行星内部碳库和深层碳循环研究的重要组成部分。新的实验数据也可以很容易地用于行星核心的讨论,例如月球核心。该团队致力于通过同行评审的期刊出版物传播研究结果,并通过新闻稿、公开讲座和研究网站向当地和更大的社区宣传他们的工作。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Density of Fe‐Ni‐C Liquids at High Pressures and Implications for Liquid Cores of Earth and the Moon
高压下 Fe-Ni-C 液体的密度及其对地球和月球液体核心的影响
- DOI:10.1029/2020jb021089
- 发表时间:2021-03
- 期刊:
- 影响因子:0
- 作者:Zhu, Feng;Lai, Xiaojing;Wang, Jianwei;Amulele, George;Kono, Yoshio;Shen, Guoyin;Jing, Zhicheng;Manghnani, Murli H.;Williams, Quentin;Chen, Bin
- 通讯作者:Chen, Bin
Experimental constraints on the sound velocities of cementite Fe3C to core pressures
渗碳体 Fe3C 声速对岩心压力的实验约束
- DOI:10.1016/j.epsl.2018.05.002
- 发表时间:2018-07-01
- 期刊:
- 影响因子:5.3
- 作者:Bin Chen;X. Lai;Jie Li;Jiachao Liu;Jiyong Zhao;W. Bi;E. Ercan Alp;Michael Y. Hu;Yuming Xiao
- 通讯作者:Yuming Xiao
Synthesis, Elasticity, and Spin State of an Intermediate MgSiO 3 ‐FeAlO 3 Bridgmanite: Implications for Iron in Earth's Lower Mantle
中间 MgSiO 3 →FeAlO 3 Bridgmanite 的合成、弹性和自旋态:对地球下地幔中铁的影响
- DOI:10.1029/2020jb019964
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:Zhu, Feng;Liu, Jiachao;Lai, Xiaojing;Xiao, Yuming;Prakapenka, Vitali;Bi, Wenli;Alp, E. Ercan;Dera, Przemyslaw;Chen, Bin;Li, Jie
- 通讯作者:Li, Jie
Short- and Intermediate-Range Structure and Dynamics of Fe-Ni-C Liquid Under Compression
压缩下 Fe-Ni-C 液体的短程和中程结构与动力学
- DOI:10.3389/feart.2019.00258
- 发表时间:2019-10
- 期刊:
- 影响因子:2.9
- 作者:Wang, Jianwei;Chen, Bin;Williams, Quentin;Manghnani, Murli H.
- 通讯作者:Manghnani, Murli H.
Melting of the Fe‐C‐H System and Earth's Deep Carbon‐Hydrogen Cycle
Fe-C-H系统的熔化和地球深层碳-氢循环
- DOI:10.1029/2022gl098919
- 发表时间:2022-07
- 期刊:
- 影响因子:5.2
- 作者:Lai, Xiaojing;Zhu, Feng;Gao, Jing;Greenberg, Eran;Prakapenka, Vitali B.;Meng, Yue;Chen, Bin
- 通讯作者:Chen, Bin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bin Chen其他文献
Influence of residential indoor environment on quality of life in China
我国住宅室内环境对生活质量的影响
- DOI:
10.1016/j.buildenv.2023.110068 - 发表时间:
2023-02-01 - 期刊:
- 影响因子:7.4
- 作者:
Yu Chen;Mengxue Li;Jifu Lu;Bin Chen - 通讯作者:
Bin Chen
Simultaneous effects of convective conditions and nanoparticles on peristaltic motion
对流条件和纳米颗粒对蠕动运动的同时影响
- DOI:
10.1016/j.molliq.2013.12.036 - 发表时间:
2014-05-01 - 期刊:
- 影响因子:6
- 作者:
T. Hayat;H. Yasmin;B. Ahmad;Bin Chen - 通讯作者:
Bin Chen
Shadows of Kerr black holes with a Gaussian-distributed plasma in the polar direction
极地方向具有高斯分布等离子体的克尔黑洞的阴影
- DOI:
10.1103/physrevd.107.024027 - 发表时间:
2022-06-09 - 期刊:
- 影响因子:5
- 作者:
Zhenyu Zhang;Haopeng Yan;Minyong Guo;Bin Chen - 通讯作者:
Bin Chen
Endovascular Outcomes in Aortic Arch Repair with Double and Triple Parallel Stent Grafts.
双和三平行覆膜支架修复主动脉弓的血管内结果。
- DOI:
10.1016/j.jvir.2020.06.026 - 发表时间:
2020-11-02 - 期刊:
- 影响因子:0
- 作者:
Baolei Guo;D. Guo;Bin Chen;Zhenyu Shi;Z. Dong;Chengshi Yan;W. Fu - 通讯作者:
W. Fu
The analysis of formation of polymer‐containing oily sludge produced during the wastewater treatment in offshore oilfield
海上油田废水处理过程中产生的含聚合物含油污泥的形成分析
- DOI:
10.1002/ese3.241 - 发表时间:
2018-11-08 - 期刊:
- 影响因子:3.8
- 作者:
Bin Chen;Lin Zhao;Cheng;Shijiang Chen;Xiaoyan Wu;Qi Li;Qing Zuo - 通讯作者:
Qing Zuo
Bin Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bin Chen', 18)}}的其他基金
Collaborative Research: SHINE: Where Are Particles Accelerated in Coronal Jets?
合作研究:SHINE:日冕喷流中的粒子在哪里加速?
- 批准号:
2229338 - 财政年份:2023
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
MRI RI-Track 2: Development of the Expanded Owens Valley Solar Array (EOVSA)-15--Major Upgrade of a Community Facility for Solar and Space Weather Physics
MRI RI-轨道 2:扩展欧文斯谷太阳能电池阵列 (EOVSA)-15 的开发——太阳能和空间天气物理社区设施的重大升级
- 批准号:
2320478 - 财政年份:2023
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Collaborative Research: SHINE: Where Are Particles Accelerated in Coronal Jets?
合作研究:SHINE:日冕喷流中的粒子在哪里加速?
- 批准号:
2229338 - 财政年份:2023
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Structure and thermal elastic properties of calcium silicate perovskite
硅酸钙钛矿的结构与热弹性性能
- 批准号:
2127807 - 财政年份:2021
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Collaborative Research: Achieving a New Understanding of Solar Flare Termination Shocks
合作研究:对太阳耀斑终止激波有了新的认识
- 批准号:
2108853 - 财政年份:2021
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
Laboratory Technician Support: Experimental Mineral Physics and Petrology Facilities at the University of Hawaii at Manoa
实验室技术人员支持:夏威夷大学马诺阿分校的实验矿物物理和岩石学设施
- 批准号:
1829273 - 财政年份:2018
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
Collaborative Research: SHINE--Magnetic Energy Release During Solar Eruptions - From Large to Small Scales
合作研究:SHINE——太阳喷发期间的磁能释放——从大尺度到小尺度
- 批准号:
1723436 - 财政年份:2017
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Collaborative Research: Electron Acceleration and Emissions from the Solar Flare Termination Shock
合作研究:太阳耀斑终止激波的电子加速和发射
- 批准号:
1735405 - 财政年份:2017
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
CAREER: Probing Energy Release in Solar Explosive Events with New Generation Radio Telescopes
职业:用新一代射电望远镜探测太阳爆炸事件中的能量释放
- 批准号:
1654382 - 财政年份:2017
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
CAREER: Elasticity and Lattice Dynamics of Iron Alloys under Earth's Core Conditions
职业:地球核心条件下铁合金的弹性和晶格动力学
- 批准号:
1555388 - 财政年份:2016
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
相似国自然基金
基于交易双方异质性的工程项目组织间协作动态耦合研究
- 批准号:72301024
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
- 批准号:
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
面向协作感知车联网的信息分发时效性保证关键技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自主性边界的人机协作-对抗混合智能控制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: CSEDI: Integrating Seismic Anisotropy, Mantle Flow, and Rock Deformation in Subduction Zone Settings
合作研究:CSEDI:在俯冲带环境中整合地震各向异性、地幔流和岩石变形
- 批准号:
2153688 - 财政年份:2022
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
Collaborative Research: CSEDI: Integrating Seismic Anisotropy, Mantle Flow, and Rock Deformation in Subduction Zone Settings
合作研究:CSEDI:在俯冲带环境中整合地震各向异性、地幔流和岩石变形
- 批准号:
2153910 - 财政年份:2022
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
Collaborative Research: CSEDI: Integrating Seismic Anisotropy, Mantle Flow, and Rock Deformation in Subduction Zone Settings
合作研究:CSEDI:在俯冲带环境中整合地震各向异性、地幔流和岩石变形
- 批准号:
2154072 - 财政年份:2022
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
CSEDI Collaborative Research: The nature and timing of Earth's accretion
CSEDI 合作研究:地球吸积的性质和时间
- 批准号:
2054884 - 财政年份:2021
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
CSEDI Collaborative Research: The Origins and Implications of Inner Core Seismic Anisotropy
CSEDI合作研究:内核地震各向异性的起源和意义
- 批准号:
2054993 - 财政年份:2021
- 资助金额:
$ 26万 - 项目类别:
Standard Grant